
Proxy Re-signature Schemes : Multi-use,
Unidirectional & Translations

N.R.Sunitha
Department of Computer Science & Engg.

Siddaganga Institute of Technology,
Tumkur, Karnataka, India.
Email: nrsunitha@sit.ac.in

.
B.B.Amberker

Department of Computer Science & Engg.
National Institute of Technology,
Warangal, Andhra Pradesh, India.

Email: bba@nitw.ac.in

Abstract— In 1998, Blaze, Bleumer, and Strauss proposed
proxy re-signatures, in which a semi-trusted proxy acts as
a translator between Alice and Bob to translate a signature
from Alice into a signature from Bob on the same message.
Following are some open challenges in proxy re-signature
schemes: i) the design of multi-use unidirectional systems
and ii) determining whether or not a proxy re-signature
scheme can be built that translates one type of signature
scheme to another. We propose a solution for the first
open problem using the property of forward-security. Our
forward-secure proxy re-signature scheme which is based on
the hardness of factoring translates one person’s signature
to another person’s signature and additionally facilitates
the signers as well as the proxy to guarantee the security
of messages signed in the past even if their secret key is
exposed today. To address the second open problem, we
construct proxy signature schemes that translates Alice’s
Schnorr/ElGamal/RSA signature to Bob’s RSA signature.
The Signatures generated by regular signature generation
algorithm and the proposed re-signature algorithms are
indistinguishable.

Index Terms— Signature translation, Proxy re-signature,
Proxy Signature, Proxy revocation, Proxy key.

I. INTRODUCTION

In Eurocrypt 98, the authors [1] proposed proxy re-
signatures, in which a semi-trusted proxy acts as a trans-
lator between Alice and Bob. To translate, the proxy
converts a signature from Alice into a signature from Bob
on the same message. The proxy, however, does not learn
any signing key and cannot sign arbitrary messages on
behalf of either Alice or Bob. Since the BBS proposal,
the proxy re-signature primitive has been largely ignored,
until in [2] it was showed that it is a very useful tool for
sharing web certificates, forming weak group signatures,
and authenticating a network path.

The proxy signatures introduced in [3], [4] must not be
confused with proxy re-signatures. A proxy signature [3],
[4], [5], [6], [7] allows one user Alice, called the original
signer, to delegate her signing capability to another user
Bob, called the proxy signer. After that, the proxy signer

Bob can sign messages on behalf of the original signer
Alice. Upon receiving a proxy signature on some mes-
sage, a verifier can validate its correctness by the given
verification procedure. By this the verifier is convinced
of the original signer’s agreement on the signed message.
In proxy re-signature, a proxy translates a perfectly-valid
and publicly-verifiable signature, σA(m), from Alice on
a certain message, m , into a signature, σB(m), from
Bob on the same message m. Notice that, in proxy re-
signature, the two signatures, one from Alice and the other
from Bob as generated by the proxy, can coexist and both
can be publicly verified as being two signatures from two
distinct people on the same message. Moreover, the proxy
can convert a single signature into multiple signatures of
several and distinct signers, and vice-versa.

The authors in [2] re-opened the discussion of proxy
re-signature by providing four separate results: (1) mo-
tivation for the need of improved schemes, by pointing
out that the original BBS scheme [1], while satisfying
their security notion, is unsuitable for most practical
applications, including the ones proposed in the original
paper, (2) formal definitions and a security model, (3)
provably secure proxy re-signature constructions from
bilinear maps, and (4) new applications. Nonetheless, they
left open the following problems : i) Design of multi-
use unidirectional scheme where the proxy is able to
translate in only one direction and signatures can be
re-translated several times. ii) Determining whether or
not proxy re-signature scheme can be built that translate
from one type of signature scheme to another i.e. like
a scheme that translates Alice’s Schnorr signatures into
Bob’s RSA based ones. In [8] the first constructions of
multi-use unidirectional proxy re-signature wherein the
proxy can only translate signatures in one direction and
messages can be re-signed a polynomial number of times
is discussed.

Further, Ateniese and Hohenberger, while formalising
the primitive, pinned down the following useful properties
that can be expected from proxy re-signature schemes.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 165

© 2011 ACADEMY PUBLISHER
doi:10.4304/jait.2.3.165-176

1. Unidirectional: re-signature keys can only be used
for delegation in one direction.

2. Multi-use: a message can be re-signed a polynomial
number of times.

3. Private Proxy: re-signature keys can be kept secret
by an honest proxy.

4. Transparent: a user may not even know that a proxy
exists.

5. Unlinkable: a re-signature cannot be linked to the
one from which it was generated.

6. Key optimal: a user is only required to store a
constant amount of secret data.

7. Non-interactive: the delegatee does not act in the
delegation process.

8. Non-transitive: the proxy cannot re-delegate signing
rights.

9. Temporary : revoke the rights given to proxy.

The construction given by Blaze et al. is bidirectional
and multi-use. However, in [2] authors have pinpointed a
flaw in the latter scheme: given a signature/re-signature
pair, anyone can deduce the re-signature key that has been
used in the delegation (i.e. the private proxy property is
not satisfied). Another issue in [1] is that the proxy and
the delegatee can collude to expose the delegators secret.
To overcome these limitations, Ateniese and Hohenberger
proposed two constructions based on bilinear maps. The
first one is a multi-use, bidirectional protocol built on BLS
signatures [9]. Their second scheme is unidirectional (the
design of such a scheme was an open problem raised
in [1]) but single-use. It involves two different signature
algorithms: first-level signatures can be translated by the
proxy whilst second-level signatures cannot. A slightly
less efficient variant was also suggested to ensure the
privacy of re-signature keys kept at the proxy. The security
of all schemes was analyzed in the random oracle model
[10]. In [11], an identity based proxy re-signature scheme
is proposed that is existentially unforgeable in the stan-
dard model under the Strong Diffie-Hellman assumption.
In [12], the authors discuss the design of generic unidi-
rectional proxy re-signature scheme using homomorphic
signatures and incorporation of forward-security into the
proxy re-signature paradigm. In [13], the authors have
constructed a blind proxy re-signature scheme. In [14], a
forward-secure threshold proxy re-signature scheme in the
standard model is proposed. In [15], the authors propose
a multi-use bidirectional ID based proxy re-signature
scheme.

Digital signatures are vulnerable to leakage of secret
key. If the secret key is compromised, any message can
be forged. To prevent future forgery of signatures, both
public key and secret key must be changed. Notice, that
this will not protect previously signed messages: such
messages will have to be re-signed with new pair of public
key and secret key, but this is not feasible. Also changing
the keys frequently is not a practical solution. To address
the above problem, the notion of forward security for

digital signatures was first proposed in [16], and carefully
formalised in [17] (see also[18], [19], [20], [21]). The
basic idea is to extend a standard digital signature scheme
with a key updation algorithm so that the secret key can be
changed frequently while the public key stays the same.

To address the first open problem, we propose a new
construction for multi-use (i.e. the translation of signa-
tures can be performed in sequence and multiple times
by distinct proxies) unidirectional (i.e. the proxy infor-
mation allows translating signatures in only one direction)
proxy re-signature scheme using the property of forward-
security. Our forward-secure proxy re-signature scheme,
based on the hardness of factoring, translates one persons
signature to another persons signature and additionally
facilitates the signers as well as the proxy to guarantee the
security of messages signed in the past even if their secret
key is exposed today (property of forward-security). With
a minor change in resigning key, we can make the scheme
to behave as a multi-use bidirectional scheme. The scheme
also satisfies the properties viz. private proxy, transparent,
unlinkable, key optimal, interactive, non-transitive and
temporary.

To address the second open problem of Ateniese and
Hohenberger, we present construction of schemes which
converts Alice’s Schnorr/ElGamal signature to Bob’s RSA
signature. We construct this by generating suitable proxy
re-sign keys which are computed by establishing com-
munication among delegatee, proxy signer and the dele-
gator. At no point of conversion the security of Schnorr,
ElGamal and RSA signature schemes are compromised.
Signatures of Schnorr and ElGamal get converted to RSA
signatures by providing only the signature and re-sign
keys as input to Re-sign algorithm.

The organisation of our paper is as follows: In Sec-
tion 2, we define the proxy re-signature, explain two of
our schemes i.e Forward-Secure Bi-directional Multi-use
Proxy Re-Signature Scheme and Forward-Secure Uni-
directional Multi-use Proxy Re-Signature Scheme and
also discuss the application of proxy re-signatures in
banking environment. In Section 3, we explain three con-
version schemes i.e Schnorr to RSA conversion Scheme
ElGamal to RSA conversion Scheme and RSA to RSA
conversion scheme and provide a comparison among
various proxy re-signature schemes. In Section 4, we
discuss properties and security of the proposed schemes.
In Section 5, proxy revocation is explained. Lastly in
Section 6, we conclude.

II. FORWARD-SECURE PROXY RE-SIGNATURE
SCHEME

As digital signatures, proxy re-signatures are also vul-
nerable to leakage of re-signing key. If the re-signing
key is compromised, any one can become a proxy. To
prevent future forgery of re-signatures, both the delegator
as well as the delegatee must change their public key
and secret key pair and a new re-signing key computed.
But this will not protect previously signed messages: such
messages will have to be re-signed with new pair of public

166 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

key and secret key which is not feasible. To address this
problem, we use the concept of forward security for proxy
re-signatures.

To translate Alice’s signature to Bob’s signature, the
secret and public keys are generated as indicated in
the Key Generation algorithm. We know that a forward
secure signature scheme has its operation divided into
time periods, each of which uses a different secret key
to sign a message. The new secret keys are generated
as described in the Key Evolution algorithm. Alice signs
in any time period j using the Signature Generation
algorithm. This signature is required to be converted to
Bob’s signature. Using the protocol indicated in the Re-
Signature Key Generation the proxy generates the re-
signature key rkA→B and executes the Re-sign algorithm
to translate Alice’s signature to Bob’s signature. This
scheme works for a period of T time periods, i.e. the
proxy has the power to resign only for T time periods
and after the expiry of T time periods the proxy is
automatically revoked.

A. Definition of Proxy Re-signature scheme

We follow the definitions given in [2]. A proxy re-
signature scheme is a tuple of polynomial time algorithms
(KeyGen, ReKey, Sign, ReSign, Verify), where, (KeyGen,
Sign, Verify) form the standard key generation, signing,
and verification algorithms.

On input (pkA, sk∗A, pkB , skB), where (pkA, sk∗A) is
the public key - secret key pair of A and (pkB , skB)
is the public key - secret key pair of B, the re-signing
key generation algorithm, ReKey, outputs a key rkA→B

for the proxy. By providing this key as input to ReSign
algorithm, the proxy converts a signature from Alice into
a signature of Bob on the same message. The proxy,
however, does not learn any signing key and cannot sign
arbitrary messages on behalf of either Alice or Bob.
(Note: rkA→B allows to transform A’s signatures into B’s
signatures, thus B is the delegator and A is the delegatee).
The input marked with a * is optional as in case of public
proxy re-signature scheme.
On input rkA→B , a public key pkA, a signature σA(m),
and a message m, the re-signature function, ReSign,
outputs σB(m) if Verify(pkA,m, σA(m)) = 1 and an
error message otherwise.

The correctness of the scheme has two requirements.
For any message m in the message space and any
key pairs (pk, sk), (pk′, sk′) ← KeyGen(1k), let σ =
Sign(sk,m) and rk ← ReKey(pk, sk, pk′, sk′). Then
the following two conditions must hold:

V erify(pk, m, σ) = 1

V erify(pk′,m, ReSign(rk, σ)) = 1.

That is, all signatures formed by either the signing or
re-signing algorithms will pass verification.

B. Multi-use Bi-directional Proxy Re-Signature Scheme

We propose a new construction for multi-use bidirec-
tional proxy re-signature scheme using the property of
forward-security. Our forward-secure proxy re-signature
scheme, based on the hardness of factoring, translates
one persons signature to another persons signature and
additionally facilitates the signers as well as the proxy
to guarantee the security of messages signed in the
past even if their secret key is exposed today (property
of forward-security). With a minor change in resigning
key, we can make the scheme to behave as a multi-
use bidirectional scheme. The scheme also satisfies the
properties viz. private proxy, transparent, unlinkable, key
optimal, interactive, non-transitive and temporary. Follow-
ing are the algorithms for the Forward-Secure Multi-use
Bi-directional Proxy Re-Signature Scheme.

1) Key generation: Both Alice and Bob generate the
keys by running the following algorithm which
takes as input the security parameter k, the number
l of points in the keys and the number T of time
periods over which the scheme is to operate. The
notations are same as in Bellare-Miner Forward-
secure signature scheme discussed in Chapter 3. p, q
are random distinct k/2 bit primes each congruent
to 3 mod 4. N ← p.q. Alice and Bob agree upon
common N .
Alice’s keys: The base secret key SKA0 =
(SA1,0, . . . , SAl,0, N, 0) (where SAi,0

R← Z∗
N

and N is a Blum-Williams integer). For verify-
ing signatures the verifier is given the public key
PKA, calculated as the value obtained on updat-
ing the base secret key T + 1 times: PKA =
(UA1, . . . , UAl, N, T) where UAi = SA2T+1

i,0 mod
NA, i = 1, . . . , l.
Bob’s keys: The base secret key SKB0 =
(SB1,0, . . . , SBl,0, N, 0) (where SBi,0

R← Z∗
N

and N is a Blum-Williams integer). For verifying
signatures the verifier is given the public key:
PKB = (UB1, . . . , UBl, N, T) where UBi =
SB2T+1

i,0 mod NB , i = 1, . . . , l.
2) Key evolution: During time period j the signer

signs using key SKj . This key is generated at the
start of period j by applying a key update algorithm
to the key SKj−1. The update algorithm squares the
l points of the secret key at the previous stage to
get the secret key at the next stage.
Key evolution for Alice: The secret key SKAj =
(SA1,j , . . . , SAl,j , NA, j) of the time period j
is obtained from the secret key SKAj−1 =
(SA1,j−1, . . . ,
SAl,j−1, NA, j−1) of the previous time period via
the update rule: SAi,j = SA2

i,j−1 mod NA, i =
1, . . . , l; j = 1, . . . , T.
Key evolution for Bob: The secret key SKBj =
(SB1,j , . . . , SBl,j , NB , j) of the time period j
is obtained from the secret key SKBj−1 =
(SB1,j−1, . . . ,

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 167

© 2011 ACADEMY PUBLISHER

SBl,j−1, NB , j−1) of the previous time period via
the update rule: SBi,j = SB2

i,j−1 mod NB , i =
1, . . . , l; j = 1, . . . , T.

3) Re-Signature Key Generation (ReKey):
On input two secret keys SKAj =
(SA1,j , . . . , SAl,j , NA, j) and SKBj =
(SB1,j , . . . , SBl,j , Nb, j), the re-signature key,
rkA→B,j = (rk1,j , . . . , rkl,j) is computed as

rki,j = SBi,j/SAi,j mod N

where i = 1, . . . , l; j = 1, . . . , T. The scheme
can be used as a bidirectional multi-use proxy re-
signature scheme.
Observe that the key rkA→B can be securely gen-
erated as follows:

a) Proxy sends a random r ∈ Z∗
N to Alice.

b) Alice sends (r/SA1,j , . . . , r/SAl,j) to Bob.
c) Bob sends (r(SB1,j/SA1,j), . . . , r(SBl,j/SAl,j)

to the proxy.
d) Proxy recovers

(SB1,j/SA1,j , . . . , SBl,j/SAl,j).

Key evolution for Proxy: The re-signature key
rkA→B,j = (rk1,j , . . . , rkl,j) of the time period j
is obtained from the re-signature key rkA→B,j−1 =
(rk1,j−1, . . . , rkl,j−1) of the previous time period
via the update rule: rki,j = rk2

i,j−1 mod N, i =
1, . . . , l; j = 1, . . . , T.

4) Signature Generation: It has as input the secret
key SKA of the current period, the message M to
be signed, and the value j of the period itself to
return a signature 〈j, (Y,Z)〉 where Y, Z in Z∗

N are
calculated as follows:

Y = R2(T+1−j)
mod N, where R

R← Z∗
N (1)

Z = R
l∏

i=1

SAci
i,j mod N, (2)

c1, . . . , cl = H(j, Y,M) being the l output bits of
a public hash function.

5) Re-Sign (ReSign): We verify the signature
before we re-sign. On input a re-signature
key rkA→B,j , a public key PKA, a signa-
ture 〈j, (Y, Z)〉, and a message M , we check
that Verify(PKA,m, 〈j, (Y, Z)〉) = 1. If the
signature,〈j, (Y, Z)〉, does not verify, re-signing is
not done and an error message is displayed.
If the signature is verified, we set

Z ′ = Z
l∏

i=1

rkci
i,j mod N,

where c1, . . . , cl = H(j, Y,M) and output the

signature 〈j, (Y, Z ′)〉. Observe that

Z ′ = Z
l∏

i=1

rkci
i,j mod N

= R
l∏

i=1

SAci
i,j(

l∏
i=1

SBi,j)ci/(
l∏

i=1

SAi,j)ci

modN

= R
l∏

i=1

SBci
i,j ,

which shows that the signature 〈j, (Y, Z ′)〉 is Bob’s
signature. Thus, Re-Sign has translated Alice’s sig-
nature into Bob’s signature.
Though, just as in BBS scheme, our scheme also
computes the resigning key as the ratio of secret
keys of Alice and Bob, but the resigning key cannot
be computed using the signature/re-signature pair.
BBS proxy re-signature scheme is briefly described
in Appendix A.9. Let the re-signature key be

rkA→B,j = (rk1,j , . . . , rkl,j)

where rki,j = SBi,j/SAi,j mod N. Let 〈j, (Y, Z)〉
and 〈j, (Y, Z ′)〉 be the signature and re-signature
pair respectively, where Z = R

∏l
i=1 SAci

i,j mod N

and Z ′ = R
∏l

i=1 SBci
i,j mod N. The ratio of re-

signature to signature is

Z ′/Z = (R
l∏

i=1

SBci
i,j mod N)/

(R
l∏

i=1

SAci
i,j mod N)

= (
l∏

i=1

SBci
i,j/

l∏
i=1

SAci
i,j) mod N

= (
l∏

i=1

(SBi,j/SAi,j)ci mod N.

Observe that the ratio of re-signature to signature
does not yield the resigning key. Using the re-
signature key the proxy can turn Alice’s signatures
into Bob’s and Bob’s to Alice’s by just inverting
the ratio of signatures. Thus the scheme here is
bidirectional.
The signature generated by Signature generation
algorithm is provided as one of the inputs to the
Re-Sign algorithm. When we observe the equations
of Signature generation and Re-Sign algorithms,
we can say that both are generating signatures
of the form 〈j, (Y, Z)〉 (Bellare-Miner signatures).
Thus, signatures generated by either the Sign or
ReSign algorithms can be taken as input to ReSign.
This property when applied repeatedly can be used
to translate Bob’s signature to Carol’s signature
using the Re-sign key rkB→C,j , Carol’s signature
to Dick’s signature using the Re-sign key rkC→D,j

and so on. Therefore we claim that a message can

168 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

be re-signed several times which is the property
of multi-use scheme. This Bidirectional Multi-use
scheme is a Transitive scheme as shown below:
To translate Alice’s signature to Bob’s signature we
use,

rkA→B,j = (rkAB
1,j , . . . , rkAB

l,j)

where rkAB
i,j = SBi,j/SAi,j mod N.

To translate Bob’s signature to Carols’s signature
we use,

rkB→C,j = (rkBC
1,j , . . . , rkBC

l,j)

where rkBC
i,j = SCi,j/SBi,j mod N.

To translate Alice’s signature to Carols’s signature
we are required to have,

rkA→C,j = (rkAC
1,j , . . . , rkAC

l,j)

where rkAC
i,j = SCi,j/SAi,j mod N. Note that

rkAC
i,j = SCi,j/SAi,j =

(SCi,j/SBi,j).(SBi,j/SAi,j) = rkBC
1,j .rkAC

1,j mod
N

6) Signature Verification: A claimed signature
〈j, (Y,Z)〉 for the message M in time period j is
accepted if

Z2(T+1−j)
= Y

l∏
i=1

UAci
i mod N (3)

where c1, . . . , cl = H(j, Y,M), and rejected other-
wise. Notice that since

Z2(T+1−j)
= (R(

l∏
i=1

SAci
i,j))

2(T+1−j)
mod N

= Y.(
l∏

i=1

SA2(T+1)ci
i,0) mod N

= Y.
l∏

i=1

UAci
i mod N.

a signature by an honest signer with the secret key
will be accepted.

C. Multi-use Unidirectional Proxy Re-signature Scheme

To address the first open problem of Ateniese and
Hohenberger, we propose a new construction for multi-
use (i.e. the translation of signatures can be performed in
sequence and multiple times by distinct proxies) unidirec-
tional (i.e. the proxy information allows translating sig-
natures in only one direction) proxy re-signature scheme
using the property of forward-security. Our [22] forward-
secure proxy re-signature scheme, based on the hardness
of factoring, translates one persons signature to another
persons signature and additionally facilitates the signers
as well as the proxy to guarantee the security of messages
signed in the past even if their secret key is exposed today
(property of forward-security). The scheme also satisfies
the properties viz. private proxy, transparent, unlinkable,
key optimal, interactive, non-transitive and temporary.

With a minor change in resigning key, we can make the
scheme to behave as a multi-use bidirectional scheme.

The key generation, key evolution and signature gen-
eration algorithms are same as the ones used in Forward-
Secure Multi-use Uni-directional Proxy Re-Signature
Scheme discussed in Section 6.4.1. The other algorithms
are given below:

1) Re-Signature Key Generation (ReKey):
On input two secret keys SKAj =
(SA1,j , . . . , SAl,j , NA, j) and SKBj+1 =
(SB1,j+1, . . . , SBl,j+1, NB , j + 1), the re-
signature key, rkA→B,j = (rk1,j , . . . , rkl,j) is
computed as rki,j = SBi,j+1/SAi,j mod N
where i = 1, . . . , l; j = 1, . . . , T − 1.
Observe that the key rkA→B can be securely gen-
erated as follows:

a) The proxy sends a random r ∈ ZN to Alice.
b) Alice sends (r/SA1,j , . . . , r/SAl,j) to Bob.
c) Bob sends (r(SB1,j+1/SA1,j), . . . ,

r(SBl,j+1/SAl,j) to the proxy.
d) The proxy recovers

(SB1,j+1/SA1,j , . . . , SBl,j+1/SAl,j).

2) Re-Sign (ReSign): On input a re-signature key
rkA→B,j , a public key PKA, a signature
〈j, (Y,Z)〉, and a message M , we check if
Verify(PKA,m, 〈j, (Y, Z)〉) = 1. If so, we set

Z ′ = Z
l∏

i=1

rkci
i,j mod N,

where c1, . . . , cl = H(j, Y,M) and output the
signature 〈j + 1, (Y, Z ′)〉, otherwise we output an
error message. Observe that,

Z ′ = Z.
l∏

i=1

rkci
i,j mod N

= R
l∏

i=1

SAci
i,j .(

l∏
i=1

SBi,j+1)ci/(
l∏

i=1

SAi,j)ci

modN

= R
l∏

i=1

SBci
i,j+1,

which shows that the signature 〈j + 1, (Y ′, Z ′)〉
is Bob’s signature. Thus, Re-Sign has translated
Alice’s signature into Bob’s signature.
Even here, just as in BBS scheme, our scheme
computes the resigning key as the ratio of secret
keys of Alice and Bob, but the resigning key cannot
be computed using the signature/re-signature pair as
shown below:
Let the re-signature key be rkA→B,j =
(rk1,j , . . . , rkl,j) where rki,j =
SBi,j+1/SAi,j mod N.
Let 〈j, (Y, Z)〉 and 〈j, (Y, Z ′)〉 be the signature/re-
signature pair where, Z = R

∏l
i=1 SAci

i,j mod NA

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 169

© 2011 ACADEMY PUBLISHER

and Z ′ = R
∏l

i=1 SBci
i,j+1 mod N . Then

Z ′/Z = (R
l∏

i=1

SBci
i,j+1 mod N)/(R

l∏
i=1

SAci
i,j mod N)

= (
l∏

i=1

SBci
i,j+1/

l∏
i=1

SAci
i,j) mod N

= (
l∏

i=1

(SBi,j+1/SAi,j)ci mod N.

Observe that the ratio of re-signature to signature
does not yield the resigning key.
In the protocol indicated in the Re-Signature Key
Generation, Alice uses her secret key of jth time pe-
riod while Bob uses his secret key of (j+1)th time
period in the computation. Thus Alice’s signature in
the jth time period is converted into Bob’s signature
in the (j + 1)th time period. Also, Bob’s signature
gets verified in the (j + 1)th time period but not in
jth time period. By choosing Bob’s (j + 1)th time
period secret key and Alice’s jth time period secret
key we are able to give the Unidirectional property
(re-signature keys can only be used for delegation
in one direction) to our scheme. This is explained
below.
The re-signature key used to translate
Alice’s signature to Bob’s signature is
rkA→B,j = (rk1,j , . . . , rkl,j) where
rki,j = SBi,j+1/SAi,j mod N. And, the re-
signature key required to translate Bob’s signature
to Alice’s signature is rkB→A,j = (rk1,j , . . . , rkl,j)
where rki,j = SAi,j+1/SBi,j mod N. We observe
that rkB→A,j cannot be obtained from rkA→B,j as
the proxy has access to ratio of SBi,j+1/SAi,j but
not to individual secret key components SAi,j+1

and SBi,j .
The signature generated by Signature generation
algorithm is provided as one of the inputs to the
Re-Sign algorithm. When we observe the equations
of Signature generation and Re-Sign algorithms,
we can say that both are generating signatures
of the form 〈j, (Y, Z)〉 (Bellare-Miner signatures).
Thus, signatures generated by either the Sign or
ReSign algorithms can be taken as input to ReSign.
This property when applied repeatedly can be used
to translate Bob’s signature to Carol’s signature
using the Re-sign key rkB→C,j , Carol’s signature
to Dick’s signature using the Re-sign key rkC→D,j

and so on. Therefore we claim that a message can
be re-signed several times which is the property of
multi-use scheme.
This Unidirectional Multi-use scheme is also Non-
Transitive.
To translate Alice’s signature to Bob’s signature we
use, rkA→B,j = (rkAB

1,j , . . . , rkAB
l,j)

where rkAB
i,j = SBi,j+1/SAi,j mod N.

To translate Bob’s signature to Carols’s signature
we use, rkB→C,j = (rkBC

1,j , . . . , rkBC
l,j)

where rkBC
i,j = SCi,j+1/SBi,j mod N.

To translate Alice’s signature to Carols’s sig-
nature we are required to have, rkA→C,j =
(rkAC

1,j , . . . , rkAC
l,j)

where rkAC
i,j = SCi,j+1/SAi,j mod N. From the

above, rkAC
i,j cannot be obtained from rkAB

i,j and
rkBC

i,j .
3) Signature Verification: As for verification, a

claimed signature 〈j, (Y, Z)〉 for the message M
in time period j is accepted if

Z2(T+1−j)
= Y

l∏
i=1

UAci
i mod N (4)

where c1, . . . , cl = H(j, Y,M), and rejected
otherwise.

D. Applications in e-banking

As most banking applications require the consent of
the signer, we have opted for an interactive method of
computing the re-signing key that is, proxy, delegator
and delegatee are involved in the computation of the re-
signing key.

1) Loan Sanctioning process: In this process a number
of bank officials are involved at various stages, right
from verifying the records to sanctioning the loan.
At every stage the concerned official is required to
sign the loan application indicating that the docu-
ments given in support of the loan is in accordance
with the bank guidelines. As each official signs
independently, there is possibility that the officials
sign for different data. Also, all the signatures are
verified at the end before sanctioning the loan. The
problem here is we need to maintain signatures and
the public keys of all the officials until the sanction
of the loan.
We address this problem using proxy re-signatures.
Let us assume that there are four officials, A,B,C
and D. The resigning keys, rkA→B , rkB→C and
rkC→D between the officials are computed. Initially
Official A verifies the loan documents pertaining to
his section, signs the loan application as sA and
passes the loan application and the documents to
Official B. The signature sA is verified by Official
B. He next verifies the loan documents pertaining
to his section and applies the Re-Sign algorithm
which converts official A’s signature to his own
signature, sB . By doing this, along with Official
A Official B has become responsible for verifying
the documents as the signature of Official B is not
created independently but by using the signature
of Official A. In this way, at every stage of loan
processing, one official’s signature is replaced by
another official’s signature. In the end, only Official
D’s signature will be on the loan application where
Official D can be assumed as the Manager of

170 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

the bank. By using re-signatures following are the
advantages:

• At every stage of loan processing only one
verification with one public key is sufficient.

• Only one signature needs to be stored at any
stage.

• The original message cannot be changed.
• On re-signing, the corresponding official be-

comes responsible for the completion of the
process at that stage.

• At the send, only one signature verification is
required instead of four verifications.

2) Frequently changing public keys: A customer of
a bank may frequently change his public key due
to policy of the organisation or for the sake of
security or due to leakage of his secret key. Let
(PKO, SKO) be the old public key - secret key
pair and (PKN , SKN) be the new public key -
secret key pair of a customer. Sometimes there
may be need to verify some old documents which
were signed using the old secret key. To handle this
situation banks can store the resigning key rkO→N

(this key can be computed whenever the customer
opts for change of public key secret key pair) which
helps them to translate an old signature signed using
SKO to a new signature which can be verified using
the new public key PKN . This enables to verify old
signatures and also all signatures (old or new) using
the new public key.

3) Accounts to be operated by a nominee: On many
occasions a customer A may be disabled (for a
short or long duration) to operate his account. This
forces the bank to give power to the nominee B
to operate the account. The resigning key rkB→A

is required to be computed by the bank when
the account holder declares his nominee. On any
transaction done by the nominee B, bank translates
the signature to the original account holder’s (here
A) signature using proxy re-signatures. This transla-
tion is not possible without the bank’s intervention.
By using proxy re-signatures, the bank need not
store the public key of the nominee to verify his
signature. This facility given to nominee can be
revoked at any instant.

4) Transferrable e-cheques: We propose a method for
transferring e-cheques with a proxy re-signature[23]
having transitive property. Let us assume that there
are four persons A,B, C and D and A issues a
cheque to B. If B wants to re-issue the same e-
cheque to C, B must act as a proxy and compute
the re-signing key rkA→B by communicating with
A. Using this key, B can translate A’s signature to
that of his own. When C re-issues the e-cheque to
D, in the same way as B, C act as a proxy and
computes the re-signing key rkB→C and translates
B’s signatures to that of his own. Before D deposits
the e-cheque in his bank, he translates C ′s to that
of his own. The bank verifies the signature of D,

which implies the verification of A′s signature by
virtue of transitivity of proxy signatures. If A also
has an account in the same bank, the bank deducts
the cheque amount from A′s account and credits
the same to D′s account. If A has an account in a
different bank, the bank sends the e-cheque details
to that bank, which on verifying A’s e-cheque
details like account number and cheque number
deducts the cheque amount from A’s account and
sends a message to credit the cheque amount to
D’s account. Thus, whenever a person wants to re-
issue an e-cheque to another person, he can translate
the signature of the issuer of the e-cheque existing
on the e-cheque to his own signature. Of course,
there is additional cost involved in computing the
resigning key. But any person who receives the e-
cheque needs to verify the signature only with the
public key of the person who issued the e-cheque
to him.

III. PROXY RE-SIGNATURE SCHEME TO TRANSLATE
ONE TYPE OF SIGNATURE SCHEME TO ANOTHER TYPE

In this section [24] we develop proxy signature scheme
for translating the following signatures:

1) Alice’s Schnorr Signature to Bob’s RSA Signature
2) Alice’s ElGamal Signature to Bob’s RSA Signature
3) Alice’s RSA Signature to Bob’s RSA Signature

In these schemes, signatures generated by signature gen-
eration algorithm and the re-signature algorithms are
indistinguishable. Further, Proxy signer revocation is also
possible.

A. Alice’s Schnorr Signature Scheme to Bob’s RSA Sig-
nature Scheme

Following protocols are used to translate Alice’s
Schnorr Signature to Bob’s RSA Signature:

1) Key generation for Schnorr Signatures
2) Key generation for RSA Signatures
3) Re-Signature key generation
4) Schnorr Signature generation
5) Schnorr Signature verification
6) Re-Sign Algorithm
7) RSA Signature verification.

In the following subsections we discuss the above proto-
cols.

1) Key Generation for Schnorr Signature Scheme:
a) Alice chooses a random large prime p such

that p− 1 = kq for some integer k and large
prime q.

b) She chooses randomly a secret key x in the
range 0 ≤ x ≤ q− 1 and generator α ∈ Z∗

p of
order q.

c) She computes β = α−x mod q. Alice’s Public
key is (p, q, α, β) and Secret key is x.

2) Key Generation for RSA Signature Scheme:

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 171

© 2011 ACADEMY PUBLISHER

a) Bob generates two large distinct random
primes p1 and q1, each roughly of the same
size.

b) He computes n = p1.q1 and φ(n) = (p −
1)(q − 1).

c) He selects a random integer e, 1 < e < φ(n),
such that gcd(e, φ(n)) = 1.

d) He computes the unique integer d, 1 < d <
φ(n), such that ed ≡ 1(modφ(n)).

e) Bob’s Public key is (n, e) and Private key is
d.

3) Re-Signature Key Generation (Re-Key): Four
re-signature keys rk1A→B , rk2A→B , rk3A→B and
rk4A→B are required for this conversion.

a) The re-signature key rk1A→B is generated as
follows:
i) Bob randomly chooses k ∈ Z and sends

k.φ(n) to Alice.
ii) Alice computes x ≡ x1 mod (k.φ(n)) and

sends it to proxy. Note that if x ≡ x2 mod
φ(n) then x1 ≡ x2 mod φ(n).

iii) Proxy sets re-sign key as rk1A→B =
x1 mod (k.φ(n)).

b) The re-signature key rk2A→B is generated as
follows:
i) Bob randomly chooses l ∈ Z and sends

l.φ(n) to Alice and to Proxy.
ii) Proxy randomly chooses r ∈ Zl.φ(n) and

sends it to Alice.
iii) Alice computes r + x mod (l.φ(n)) and

sends it to Bob.
iv) Bob computes r+x+d mod (l.φ(n)) and

sends it to proxy.
v) Proxy sets the re-sign key as rk2A→B =

x + d mod (l.φ(n)).
c) The re-signature key rk3A→B is generated as

follows:
i) Proxy sends a random r ∈ Zq to Alice.

ii) Alice sends r + x mod (q − 1) to Bob,
iii) Bob sends r + x + d mod (q − 1) to the

proxy.
iv) Proxy recovers d+x mod (q−1) and sets

the re-sign key rk3A→B = d+x mod (q−
1).

d) The re-signature key rk4A→B is generated as
follows:
i) Bob sends αd mod q to Proxy.

ii) Proxy sets the re-sign key rk4A→B =
αd mod q.

4) Schnorr Signature generation:
a) Alice selects a random integer k, such that

0 ≤ k ≤ q − 1.
b) She computes r = αk mod q, v =

H(m||r) mod q and s = (k + x.v) mod q,
where H is a collision-resistant hash function.

c) The signature of Alice on the message m is
(v, s), which is sent to Proxy.

5) Schnorr Signature verification: On receiving Al-
ice’s signature on m, proxy does the following to
verify the signature:

a) He computes v′ = H(m||rv) where, rv =
αs.β−v mod q.

b) He accepts the signature if and only if v′ = v.
6) Re-signature (Re-Sign) On input re-signature keys

rk1A→B , rk2A→B , rk3A→B and Alice’s Schnorr
signature (v, s) on m, Re-Sign converts Alice’s
Schnorr signature to Bob’s RSA signature in two
steps.
• Step 1: Compute σ1 =

αs−rk3A→B .v.(rk4A→B)v and check that
σ1 = 1.
Note that this step ensures that Alice uses
the same key used during re-signature key
generation to sign the message m.

• Step 2: If σ1 = 1 mod q, then compute

σ2 = R(m)rk2A→B .R(m)−rk1A→B mod n,

where R is the public redundancy function
[25].
Note that σ2 = R(m)d mod n is Bob’s RSA
signature.

Thus, Re-Sign has translated Alice’s Schnorr
signature to Bob’s RSA signature.

7) RSA Signature verification: Any verifier can ver-
ify the RSA signature generated by Re-sign as
follows:

a) Compute R(m) = Ce mod n.
b) Verify m = R−1(R(m)) mod n.

B. Alice’s ElGamal Signature to Bob’s RSA Signature
Scheme

Following protocols are used to translate Alice’s ElGa-
mal Signature to Bob’s RSA Signature:

1) Key generation for ElGamal Signatures
2) Key generation for RSA Signatures
3) Re-Signature key generation
4) ElGamal Signature generation
5) ElGamal Signature verification
6) Re-Sign Algorithm
7) RSA Signature verification.

In the following subsections we discuss the above proto-
cols.

1) Key generation for ElGamal Signatures:
a) Alice generates a large random prime p and a

generator α of the multiplicative group Z∗
p .

b) She select a random integer s, 1 ≤ s ≤ p− 2.
s is the secret key.

c) She computes the public key β = αs mod p.
2) Key generation for RSA Signatures:

a) Bob generates two large distinct random
primes p1 and q1, each roughly the same size.

172 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

b) He computes n = p1.q1 and φ(n) = (p −
1)(q − 1).

c) He select a random integer e, 1 < e < φ(n),
such that gcd(e, φ(n)) = 1.

d) He computes the unique integer d, 1 < d <
φ(n), such that ed ≡ 1(modφ(n)).

e) Bob’s Public key is (n, e) and Private key is
d.

3) Re-Signature Key Generation (Re-Key): Four re-
signature keys rk1A→B , rk2A→B , rk3A→B and
rk4A→B are required for this conversion.

a) The re-signature key rk1A→B , is generated as
follows:
i) Bob randomly chooses k ∈ Z and sends

k.φ(n) to Alice.
ii) Alice computes s ≡ s1 mod (k.φ(n)).

Note that if s ≡ s2 mod φ(n) then s1 ≡
s2 mod φ(n)

iii) Proxy sets resign key as rk1A→B =
s1 mod (k.φ(n)).

b) The re-signature key rk2A→B is generated as
follows:
i) Bob randomly chooses l ∈ Z and sends

l.φ(n) to Alice and to Proxy.
ii) Proxy randomly chooses r ∈ Zl.φ(n) and

sends it to Alice.
iii) Alice computes r + s mod (l.φ(n)) and

sends it to Bob.
iv) Bob computes r + s+d mod (l.φ(n)) and

sends it to proxy.
v) Proxy sets the re-sign key as rk2A→B =

s + d mod (l.φ(n)).
c) The re-signature key rk3A→B is generated as

follows:
i) Proxy sends a random r ∈ Zp to Alice.

ii) Alice sends r + s mod (p− 1) to Bob.
iii) Bob sends r + s + d mod (p − 1) to the

proxy.
iv) Proxy recovers s+d mod (p−1) and sets

rk3A→B = s + d mod (p− 1).
d) The re-signature key rk4A→B is generated as

follows:
i) Bob sends αd mod p to Proxy.

ii) Proxy sets the re-sign key rk4A→B =
αd mod p.

4) ElGamal Signature generation:
a) Alice selects a random secret integer k, 1 ≤

k ≤ p− 2 with gcd(k, p− 1) = 1.
b) She computes y1 = αk mod p.
c) She computes y2 = (H(m)− s.y1)k−1 mod

(p− 1), where H is a collision-resistant hash
function.

d) The signature (y1, y2) on message m is sent
to the Proxy.

5) ElGamal Signature verification: The proxy veri-
fies the received ElGamal signature as follows:

a) He accepts the signature if αH(m) =
βy1yy2

1 mod p.
6) Re-signature (ReSign): On input of re-signature

keys rk1A→B , rk2A→B and rk3A→B and Alice’s
ElGamal signature (y1, y2) on m, Re-Sign algo-
rithm converts Alice’s ElGamal signature to Bob’s
RSA signature in two steps:
• Step 1: Compute σ1 =

yy2
1 .α−H(m).α(d+s).y1 .α−d.y1 mod p and

check that σ1 = 1. Note that this step ensures
that Alice uses the same key used during re-
signature key generation to sign the message
m.

• Step 2 If σ1 = 1 mod p, then compute

σ2 = R(m)rk2A→B .R(m)−rk1A→B mod n,

where R is the public redundancy function
[25].
Note that σ2 = R(m)d mod n
Thus, Re-Sign has translated Alice’s ElGamal
signature into Bob’s RSA signature.

7) RSA Signature verification: Any verifier can ver-
ify the RSA signature generated by Re-sign as
follows:

a) Compute R(m) = Ce mod n.
b) Verify m = R−1(R(m)) mod n.

C. Alice’s RSA Signature Scheme to Bob’s RSA Signature
Scheme

In literature, to the best of our knowledge, there are
no proxy re-signature schemes for primitive signature
schemes like RSA, ElGamal, Schnorr, etc., though such
schemes are commercially used. Therefore, we present
construction of a scheme which converts Alice’s RSA
signature to Bob’s RSA signature. We construct this by
generating suitable proxy re-sign keys which are com-
puted by establishing communication among delegatee,
proxy signer and the delegator. At no point of conversion
the security of RSA signature scheme is compromised.

Following protocols are used to translate Alice’s RSA
Signature [25] to Bob’s RSA Signature:

1) Key generation for Alice and Bob as in RSA
Signature Scheme.

2) Re-Signature key generation
3) Alice’s RSA Signature generation
4) Alice’s RSA Signature verification
5) Re-Sign Algorithm
6) Bob’s RSA Signature verification
We discuss these protocols in the following subsections.
1) RSA Key generation: Let (na, ea) be the Public

key and (na, da) be the Private key of Alice. Let
(nb, eb) be the Public key and (nb, db) be the Private
key of Bob. We assume that na is less than nb. For
Alice (Bob), let Ma (Mb) be the message space,
MSa (MSb) be the signing space and Ra (Rb) be
the public redundancy function which gives a 1−1
mapping from Ma (Mb) to MSa (MSb).

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 173

© 2011 ACADEMY PUBLISHER

2) Re-Signature Key Generation (ReKey): The re-
signature key rkA→B , is generated as follows:

a) Bob randomly chooses l ∈ Znb
and sends it

to Alice secretly.
b) Bob computes (db− l) mod nb and sends it to

Proxy.
c) Proxy sets the re-sign key as rkA→B = db −

l mod nb.
3) Alice’s RSA Signature generation:

a) Alice computes Ca = Ra(m)da mod na. She
also computes Rb(m)l mod nb.

b) Alice’s signature on m is Ca and additionally
Rb(m)l is sent to proxy.

4) Alice’s RSA Signature verification: The proxy
verifies the received RSA signature as follows:

a) Compute Ra(m) = Cea
a mod na.

b) Verify m = R−1
a (Ra(m)) mod na

5) Re-Sign (ReSign): On input of re-signature key
rkA→B , Alice’s RSA signature Ca on m and ad-
ditionally Rb(m)l, Re-Sign converts Alice’s RSA
signature to Bob’s RSA signature Cb on m. Taking
the value of m from Alice’s RSA signature verifi-
cation,

Cb = Rb(m)l.Rb(m)rkA→B mod nb

= Rb(m)l.Rb(m)db−l mod nb

= Rb(m)db mod nb.

Thus, Re-Sign has translated Alice’s RSA signature
into Bob’s RSA signature.

6) RSA Signature verification: Any verifier can ver-
ify the RSA signature generated by Re-sign as
follows:

a) Compute Rb(m) = (Cb)eb mod nb.
b) Verify m = R−1

b (Rb(m)) mod nb.

D. Comparison among the various proxy re-signature
schemes

Table 1 gives the comparison among the various
proxy re-signature schemes. BBS is the scheme of
Blaze, Bleumer, and Strauss, AHb is the bidirectional
scheme of Ateniese and Hohenberger, AHu is the
unidirectional scheme of Ateniese and Hohenberger, LV
is Libert-Vergnaund scheme, OU is our Unidirectional
scheme, OB is our Bi-directional scheme and OR is the
RSA Proxy-resignature scheme.

E. Conversion of one type of Signature to another type :
Applications

1) If we have schemes which convert different types of
signatures to one type of signature, for example all
types of signatures are converted to RSA signatures,
then signatures can be easily aggregated and a
single verification done to verify all the signatures
which are originally of different type signatures.

No. Property BBS AHb AHu LV OU OB OR

1 Unidirect No No Yes Yes Yes No Yes
2 Multi-use Yes Yes No Yes Yes Yes Yes
3 Prv. proxy No Yes No No Yes Yes Yes
4 Transparent Yes Yes Yes Yes Yes Yes Yes
5 Key Optimal Yes Yes Yes Yes Yes Yes Yes
6 Non-interact No No Yes Yes No No No
7 Non-transit No No Yes Yes Yes No Yes
8 Temporary No No Yes No Yes Yes Yes
9 Forward-sec No No No No Yes Yes No

TABLE I.
COMPARISON AMONG THE VARIOUS PROXY RE-SIGNATURE

SCHEMES

2) By providing a variety of conversion schemes, a
user can sign using any signature scheme and the
required party can convert it into the signature type
that it requires.

3) Using signature conversion schemes, documents can
be easily transferred across organisations following
different signature schemes.

4) Suppose Alice’s ElGamal Signature is converted to
Bob’s RSA signature, Bob’s signature is publicly
available and there are chances of Bob’s secret key
being exposed than Alice’s secret key. Thus the
original signer Alice’s secret key is more secure
than Bob’s secret key.

IV. ANALYSIS AND SECURITY FOR THE PROPOSED
SCHEMES

Here we analyse the properties satisfied by the pro-
posed Proxy Re-signature schemes.

A. Properties of the New Proxy Re-signature schemes

1) Unidirectional: The re-signature keys allows the
proxy to turn Alice’s signatures into Bob’s, but
not Bob’s into Alice’s. This property allows for
applications where the trust relationship between
two parties is not necessarily mutual. Schemes that
do not have this property are called bidirectional.

2) A message can be re-signed a polynomial number
of times. That is, signatures generated by either the
Sign or ReSign algorithms can be taken as input to
ReSign.

3) Private Proxy: In a private proxy scheme, the re-
signature keys are kept secret by an honest proxy.
Thus, a single proxy may control which signatures
get translated.

4) Transparent: The proxy is transparent in the scheme,
meaning that a user may not even know that a proxy
exists. More formally, we mean that the signatures
generated by Bob on a message m using the Sign al-
gorithm are computationally indistinguishable from
the signatures on m generated by the proxy as the
output of ReSign. Notice that this implies that the
input and the corresponding output of the ReSign
algorithm cannot be linked to each other.

5) Key Optimal: Alice is only required to protect
and store a small constant amount of secret data

174 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

(i.e., secret keys) regardless of how many signature
delegations she gives or accepts. Here, we want to
minimize the safe storage cost for each user.

6) Interactive: The proxy creates the re-signature keys
by interacting with Bob (the delegator) and Alice
(the delegatee).

7) Non-transitive: According to the property of transi-
tivity, from rkA→B and rkB→C , the proxy must
be able to produce rkA→C . The new schemes
are non-transitive as we are considering conversion
of schemes between different public key crypto-
systems and still there are no schemes to convert
between RSA and ElGamal/Schnorr.

8) Temporary: Whenever a party delegates some of her
rights to another party, there is always the chance
that she will either need or want to revoke those
rights later on. We have discussed this under proxy
signer revocation.

B. Security of our schemes

Our security model protects users from two types of
attacks: those launched from parties outside the system
(External Security) and those launched from parties inside
the system such as the proxy, another delegation partner
or collusion between them (Internal Security).

External Security: Our security model protects a user
from adversaries outside the system. This is equivalent
to adaptive chosen-message attack where an adversary
cannot create a new signature even for a previously signed
message. For a non-zero n ∈ poly(k) and algorithm A,

Pr[(pki, ski)← KeyGen(1k)i∈, (t, m, σ) ←
AOsign(.,.),Oresign(.,.,.,.) :
V erify(pkt,m, σ) = 1] < 1/poly(k)

where the oracle Osign takes as input an index j
and a message m ∈ M , and produces the output of
Sign(skj ,m); the oracle Oresign takes as input two
distinct indices i, j, message m, and signature σ and
produces the output of Resign. Here the proxy ie required
to keep the re-signature keys private.

Internal Security: If the delegator and delegatee are
both honest, then:

1) the proxy cannot produce signatures for the dele-
gator unless the message was first signed by the
delegatee and

2) the proxy cannot create any signature for the dele-
gatee.

V. PROXY SIGNER REVOCATION

In all the constructions discussed above, we can revoke
the proxy signer from performing conversion of signatures
from one type of signature scheme to another type by
including the expiry date as part of the signature. If the
current date is greater than the expiry date, the verifier
stops the verification process. If a proxy signer is to be
revoked before the expiry date, a proxy revocation list can
be maintained in which the public key of proxy signers to
be revoked are entered. The entry is retained only till the

expiry date and later removed. This helps to maintain a
small list of revoked proxy signers. The verifier performs
the verification of the signature received from the proxy
signer only if his public key is not available in the proxy
revocation list and the current date is less than or equal
to the expiry date.

VI. CONCLUSION

We have proposed two schemes for the open challenges
in proxy re-signatures. The first proposed scheme is
the design of multi-use unidirectional proxy re-signature
scheme in which one person’s signature is translated to
another person’s signature and additionally facilitating the
signers as well as the proxy to guarantee the security of
messages signed in the past even if their secret key is
exposed today. Our scheme is a multi-use unidirectional
scheme where the proxy is able to translate in only
one direction and signatures can be re-translated several
times. The second scheme convert Schnorr/ElGamal/RSA
to RSA signatures. The signatures generated by regu-
lar signature generation algorithm and the proposed re-
signature schemes are indistinguishable.

REFERENCES

[1] Blaze and Bleumer and Strauss, “Divertible protocols and
atomic proxy cryptography,” in Advances in Cryptology
EUROCRYPT, volume 1403 of LNCS, Springer-Verlag,
241-256, Mar. 1998.

[2] G. Ateniese, S. Hohenberger, “Proxy re-signatures: new
definitions, algorithms, and applications,” in ACM CCS,
pages 310319, ACM Press, Mar. 2005.

[3] M. Mambo, K. Usuda, and E. Okamoto, “Proxy signature:
Delegation of the power to sign messages,” IEICE Trans.
Fundamentals, pp. 13381353, no. 9, Sept. 1996.

[4] M. Mambo, K. Usuda, E. Okamoto, “Proxy signatures for
delegating signing operation,” in 3rd ACM Conference on
Computer and Communications Security, pp. 48-57. ACM
Press, Mar. 1996.

[5] A. Boldyreva, A. Palacio, and B. Warinschi, “Secure proxy
signature schemes for delegation of signing rights,” in
http://eprint.iacr.org/2003/096, Oct. 2003.

[6] B. Lee, H. Kim and K. Kim., “Strong proxy signature and
its applications,” in the 2001 Symposium on Cryptography
and Information Security, Vol. 2/2, pp. 603-608. Oiso,
Japan, 23-26,pages 127144,, Jan. 2001.

[7] S. Kim, S. Park, and D. Won, “Proxy signatures, revisited,”
in Information and Communications Security, LNCS 1334,
pp. 223-232. Springer-Verlag, Mar. 1997.

[8] Benoit Libert and Damien Vergnaud, “Multi-Use Unidirec-
tional Proxy Re-Signatures,” in In CCS Proceedings of the
15th ACM conference on Computer and communications
security,Alexandria, VA, USA, Oct. 2008.

[9] D. Boneh, B. Lynn, H. Shacham, “Short signatures from
the Weil pairing,” in Advances in Cryptology-Crypto pro-
ceedings,volume 2248 of LNCS, pp. 514-532, Springer-
Verlag, Mar. 2002.

[10] M. Bellare, P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in ACM CCS,
pages 6273, ACM Press, Mar. 1993.

[11] Xiaoming Hu; Zhe Zhang; Yinchun Yang, “Identity Based
Proxy Re-Signature Schemes without Random Oracle,”
in Computational Intelligence and Security, pp. 256-259,
Mar. 2009.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011 175

© 2011 ACADEMY PUBLISHER

[12] Sherman S.M. Chow, Raphael C W Phan, “Proxy Re-
signatures in the Standard Model,” in ISC, LNCS 5222, pp.
260-276, Springer-Verlag Berlin heldelberg, Mar. 2008.

[13] Yu Qiao Deng, “A Blind Proxy Re-Signatures Scheme
Based on Random Oracle,” in Advanced Research on
Industry, Information System and Material Engineering,
Feb. 2011.

[14] Xiaodong Yang, Caifen Wang, Yulei Zhang, Weiyi Wei,
“A New Forward-secure Threshold Proxy re-signature
scheme,” in IEEE International Conference on Network
Infrastructure and Digital Content, pp. 566 - 569, Mar.
2009.

[15] Jun Shao, Zhenfu Cao, Licheng Wang and Xiaohui Liang,
“Proxy Re-signature Schemes without Random Oracles,”
in Indocrypt, LNCS 4859, pp. 197-209, Springer Verlag,
Mar. 2007.

[16] Anderson, R., “Forward Security,” in Fourth Annual Con-
ference on Computer and Communications Security, Mar.
1997.

[17] Bellare, M., Miner, S., “A Forward-Secure Digital Sig-
nature Scheme,” in Advances in Cryptology-Crypto pro-
ceedings, Lecture notes in Computer Science, Vol. 1666.
Springer-Verlag, Mar. 1999.

[18] Abdalla,M., Reyzin,L, “A New Forward-Secure Digital
Signature Scheme,” in ASIACRYPT, LNCS 1976, pp. 116-
129. Springer-Verlag,116-129, Mar. 2000.

[19] Krawczyk, H., “Simple forward-secure signatures from
any signature scheme,” in the 7th ACM Conference on
Computer and Communications Security, ACM, 108-115,
Mar. 2000.

[20] Itkis, G., Reyzin, L., “Forward-secure signatures with
optimal signing and verifying,” in CRYPTO, LNCS 2139,
Springer-Verlag, 332-354, Mar. 2001.

[21] Kozlov, A, Reyzin, L., “Forward-Secure Signatures with
Fast Key Update,” in Security in Communication Networks,
LNCS 2576, Springer-Verlag, (241-256), Mar. 2002.

[22] N.R. Sunitha and B.B.Amberker, “Multi-use Unidirec-
tional Forward-Secure Proxy Re-Signature scheme,” in
IEEE Workshop on Collaborative Security Technologies,
Bangalore, India, Dec. 2009.

[23] N.R.Sunitha B.B.Amberker and Prashant Koulgi, “Trans-
ferable e-cheques using Forward-Secure Multi-signature
Scheme,” in The World Congress on Engineering and
Computer Science, 24-26, San Francisco, USA, Oct. 2007.

[24] N.R. Sunitha and B.B. Amberker, “Proxy re-signature
scheme that translates one type of signature scheme to
another type of signature scheme,” in Third International
Conference on Network Security and Applications, Chen-
nai, India, Communications in Computer and Information
Science Series , Springer Verlag, July 2010.

[25] A.Menezes, P.Van Orschot and S.Vanstone, “Handbook of
applied cryptography,” in CRC Press, 1996.

Biographies
N.R.Sunitha obtained her Ph.D from Visvesvaraya Techno-

logical University, Belgaum, Karnataka, India. She is presently
working as Associate Professor in the Department of Computer
Science & Engineering, Siddaganga Institute of Technology,
Tumkur, India. Her area of Research is Information Security.

B.B.Amberker obtained his Ph.D from the Department of
Computer Science & Automation, IISc., Bangalore, India. He
is presently working as Professor in the Department of Com-
puter Science & Engineering, National Institute of Technology,
Warangal, India. His area of Research is Cryptography.

176 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 3, AUGUST 2011

© 2011 ACADEMY PUBLISHER

