
An Efficient Technique for Detection of
Suspicious Malicious Web Site

K. Pragadeesh Kumar1, Dr.N.Jaisankar2, N.Mythili3
2School of computing science and Engineering, VIT University, Vellore, India

1 &3 School of Information Technology and Engineering, VIT University, Vellore, India

Abstract—In today’s web world web sites became attackers’
main target. Since days before virus signatures had been
used to detect malicious web pages. In this paper the
malicious web pages will be detected using a prototype
system based on the concept of abnormal visibility, also it
detects the exact location of malicious code in the source
code. The proposed prototype system uses a Web Spider
which captures the entire link URLs associated with the web
page. HTML parser will parse the web pages and convert
the code into data structures recognized by the Detector.
The Detector will match the structure with the abnormal
visibility fingerprints and locates possible malicious code.
The system proves higher performance, higher efficiency
and lower maintenance cost, almost all malicious web pages
are detected and the malicious codes encoded in the
JavaScript. The system provides security alarm for end-
users before visiting malicious web pages.

I. INTRODUCTION

With the rapid extension of web applications, the

attacks through websites have become common. When
downloaded the malicious code can cause undesirable
changes on the host system and affect normal operations.
The prototype system use Web spider and HTML parser
to get and parse the Web pages from target site. The
system will parse the codes of the Web pages and convert
them into the data structures that can be recognized by
the detection engine, then match these structures with the
abnormal visibility fingerprints and locate the possible
malicious codes in the source codes of pages. For the
reason that the attackers often use JavaScript to generate
malicious codes dynamically, this system can also
interpret and execute JavaScript scripts.

Cross-site scripting is gaining popularity among
attackers as an easy exposure to find in Web sites. Left
unattended, your Web site's ability to operate securely, as
well as your company's reputation, may become victim of
the attacks. This project is proposed to raise the
awareness of this emerging threat and to present a
solution implementation for Web applications to avoid
this kind of attack.

There are wide variants of malware affecting the
websites. The iframe HTML code to has been used
mostly, to inject maliciousness into the websites using the
iframe tags. The code may be injected into HTML, PHP,
ASP or tpl source files. Themes or templates of Content
management systems are the infectious source where in
the malicious tags are integrated. The virus will also

modify .htaccess and hosts files. The infection is not a
server-wide exploit, it will only infect sites on the server
that it has passwords to. The BadWare distribution is a
widely known unavoidable peeking into the host servers
and it is an inevitable need to have a solution

‘Iframe virus’ is a type of badware. Badware
distribution has been expanded beyond traditional
channels like email viruses to harder-to-avoid methods
like automated “drive-by downloads” that are launched
by compromised web pages.

The iframe variants will also sneak through JavaScript.
iframe tags may not be seen in plain text in the source
because it is encoded. If the encoded script code is
decoded, it will contain code to invoke iframe via
JavaScript.

Our goal is to develop a prototype system which has to
detect the malicious iframe tags in the HTML code and in
encoded JavaScript. The Malware detection tool will look
into the HTML code and decode JavaScript too if any,
each time when a webpage is loaded to look for any
maliciousness. For detection we use the concept of
‘Abnormal Visibility Recognition’. The concept relies on
analyzing the property of iframe tags, especially for width
and height value to meet the threshold value. The java
HTML parser will have major part of job which has to be
done.

II. RELATED WORK

M. Almgren, H. Debar, M. Dacier, findings aimed at
presenting an intrusion-detecting tool for protecting the
web servers from attacks. The paper discuss on providing
a tool that can run at real time for detecting undesirable
changes and keep track on suspicious hosts. The design is
flexible and uses virus signature matching for detection
and try to reduce number of false alarms. The intrusion
detection system have been discussed has the task of
monitoring the usage of information systems to detect the
apparition of insecure states either by authorized users or
any external parties. The attack generally target on
operating system and services other than web server.

The tool allows the search for flexible attack signatures
in any field of the server logs. By grouping these into
classes, similar attacks can be generalized under one
name to save time. It also allows different alerts to be
merged, and it will perform refined checks if certain
conditions are met. The signatures are not limited to
matching simple cgi programs, but are extended to
detection of denial-of-service attacks. The design of the

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 4, NOVEMBER 2011 217

© 2011 ACADEMY PUBLISHER
doi:10.4304/jait.2.4.217-221

tool is modular to allow it to be extended in the future. It
is portable between different platforms, and can run in
real time.

C. Seifert, I. Welch, P. Komisarczuk, used ‘Honey pot’
technique to detect attacks. It focuses on malicious web
servers, which they interact with by driving a web
browser on the dedicated honeypot system. Honeyclient
detects successful attacks by monitoring changes to a list
of files, directories, and system configuration after the
Honeyclient has interacted with a server.

Alexander Moshchuk, Tanya Bragin, Damien Deville,
Steven D. Gribble, and Henry M. Levy. SpyProxy
intercepts and evaluates Web content in transit from Web
servers to the browser. SpyProxy executes active Web
content in a safe virtual machine before it reaches the
browser. Because SpyProxy relies on the behavior of
active content, it can block zero-day attacks and
previously unseen threats. Thus the method overcomes
the ‘strider Honeymonkey problem, Zeroth day attack.
The system shows some delay in execution but its
negligible to some extent.

The proposed system has been proven to be more
efficient than the existing system that uses virus signature
matching. The signature matching technique will have
disadvantages of maintaining huge database of signature
and the host is vulnerable to attacks until the patch has
been released. The proposed system uses a significant
method- Abnormal Visibility Recognition, for
maliciousness detection. The system maintains a
relatively fewer abnormal visibility modes which is more
stable than signatures. The method examines only few
attributes of HTML tags instead of maintaining huge
signature database. The method records the location of
suspicious code too, that helps the admin to rectify the
maliciousness.

The disadvantage may be the parser has to look into
the same HTML code each time when the URL is entered
were the time consumption causes little inconvenience
but there is no other way as the Web Pages are dynamic
and cross-site scripts can interrupt at any time when any
hoax is done.

III. PROPOSED WORK

We design and implement a prototype of malicious
Web pages detection system based on abnormal visibility
recognition. The architecture of the prototype system is
depicted in Figure 1. The proposed system consists of
four main components:

1. Web spider.
2. HTML parser.
3. JavaScript engine.
4. Abnormal visibility detector.

Figure 1. Architecture of the system

 The web spider will automatically crawl from the

target website via the HTML source code and collect the
possible URL links associated with the site. The link
URLs are made into a queue and will be fed into the
HTML parser. The spider starts crawling once when
initial URL link is given. The program will collect all
links including URLs from e-mail links until any error or
broken link is found. Reports will be given for any
errors.

As soon as a recognized URL is given, the Spider
crawls through the site for examining for good and bad
links. It will indicate for broken links too.

spider = new Spider(this);
spider.clear();
base = new URL(url.getText());
spider.addURL(base);
spider.begin();
The HTML parser will parse the contents of each link.

This is the specific module of more significant process, in
which unique class has to be defined to determine
erroneous constructs. Dependency: solely depend on
previous module’s output source. In which broken links
will be skipped off from parsing as the report is intimated
already. Java contains support both for accessing the
contents of URLs and parsing HTML. The "processURL"
method, which is called for each URL encountered, does
this. Reading the contents of a URL is relatively easy in
Java.

URLConnection connection = url.openConnection();
 if ((connection.getContentType()!=null) &&
 !connection.getContentType().toLowerCase()
 .startsWith("text/")) {
 getWorkloadWaiting().remove(url);
 getWorkloadProcessed().add(url);
 log("Not processing because content type is: " +
 connection.getContentType());
 return; }

218 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 4, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

 A special-purpose JavaScript interpreter is
implemented to get the execution output of browser-end
scripts that are often used to generate malicious code
dynamically by attackers. Our JavaScript engine consists
of a Rhino-based JavaScript interpreter and some
necessary simulation built-in objects. The scripts
extracted from original Web page will be fed to
JavaScript engine; the interpreter will interpret and
execute them. When the scripts need to output some data
to browser, e.g. HTML codes generated, the built-in
objects will receive the data like a real browser. After
interpreting, the output data collected by built-in objects
will be integrated with HTML codes of original Web
page and passed to parser. As soon as the links obtained
simultaneously the HTML code for each link will be
scrutinized for suspicious tags, as assisted by
‘HTMLEditorKit’ class of java.
 Already as defined the detector will analyze the tag
attributes by matching it with the abnormal visibility
fingerprints. For plain HTML codes, the detector will
check the width and height attributes of related HTML
tags directly. For JavaScript scripts, detection will be
performed to the tags in the results of interpretation and
execution. The width and height values will be compared
with a threshold. If they are less than the threshold, we
consider that there is an abnormal visibility in the Web
page and it would be regarded as a possible malicious
page. If the tag value for a given page is less than the
threshold value set, it is detected to be a possibly
malicious web page. So far, the prototype system has
three kinds of fingerprints as follows:

 1) Abnormal width or height.
 2) Abnormal display: none display style.
 3) Abnormal iframe generated by scripts

A detector is used to detect abnormal visibility. The

system determines whether a tag is abnormal by matching
its attributes values. To calculate the values of width and
height attributes set in percentage format, we define a
generalized display screen area as a calculation baseline
whose area is 1027*768 pixels.

IV. RESULTS AND DISCUSSION

The spider begins processing when the begin method is
clicked. To allow the example program to maintain its
User Interface, the spider is started up as a separate
Thread. Clicking the "Begin" button begins this
background spider thread. When the background thread
begins, the run method of the "CheckLinks" class is
called. The run method begins by instantiating the Spider
object. This can be seen here:

 spider = new Spider(this);
 spider.clear();
 base = new URL(url.getText());
 spider.addURL(base);
 spider.begin();

Figure 2. User interface after execution.

Figure 3. Processing a harmless website

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 4, NOVEMBER 2011 219

© 2011 ACADEMY PUBLISHER

Determine a malicious website

Width or height attributes of ‘iframe’ tags

For determination on of a malicious site, using the
defined properties we have developed a set of example to
hide some display features of the webpage. Thus we can
check easily whether the system detects the
maliciousness.

Figure 4. Showing malicious page in case of width and height property

is zero both

Set the display style of the ‘iframe’ tags to
“display: none”
Our method can record the location of the tags when
parsing the Web pages so as to locate the malicious
codes in the source codes accurately.

Figure 5. Showing malicious code location in the source code by

decoding javascript.

V. CONCLUSION AND FUTURE ENHANCEMENTS

In this paper, based on the analysis and statistics of
Web malicious codes, abnormal visibility and propose a
corresponding detection method is introduced to detect
malicious Web pages effectively and efficiently. A
prototype detection system is implemented based on
abnormal visibility recognition. The experiments show
that the system can detect a Web site with high
performance, and can detect almost all the Web pages
containing malicious codes. The system can be used to

220 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 4, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

monitor the security state of target Web sites and provide
security alarm for end users before visiting malicious
Web pages. In the future, we will improve and refine the
abnormal visibility fingerprints to avoid false negative as
much as possible.

REFERENCES

[1] G. McGraw and G. Morrisett. "Attacking malicious code:
report to the Infosec research council," IEEE Software,
Vol. 17, No. 5, pp. 33-41, 2000.

[2] M. Christodorescu, and S. Jha. "Testing malware
detectors," Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and
Analysis 2004, pp. 34- 44, Boston, MA, USA, July 2004. .

[3] I. S. Ja J. Kinder, S. Katzenbeisser, C. Schallhart, and H.
Veith. "Detecting malicious code by model checking,"
Proceedings of the 2nd International Conference on
Intrusion and Malware Detection and Vulnerability
Assessment, Vol. 3548, pp. 174-187, Vienna, Austria, July
2005. [CrossRef] .

[4] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. "Semantics-aware malware detection,"

Proceedings of the 2005 IEEE Symposium on Security and
Privacy , pp. 32-46, Oakland, CA, USA, May 2005.

[5] J. Bergeron et al. "Static Detection of Malicious Code in
ExecuTable Programs," Symposium on Requirements
Engineering for Information Security, Indianapolis,
Indiana, USA, March 2001.

[6] M. Christodorescu and S. Jha. "Testing malware
detectors," Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and
Analysis 2004, pp. 34-44, Boston, MA, USA, July 2004.

[7] M. Young, Alexander Moshchuk, Tanya Bragin, Steven
D. Gribble, and Henry M. Levy. "A Crawler-based Study
of Spyware on the Web," In Proceedings of the 2006
Network and Distributed System Security Symposium,
pages 17-33, February 2006.

[8] Bin Liang et al. Malicious Web Pages Detection Based on
Abnormal Visibility Recognition, IEEE, 2009.

[9] Provos, N., McNamee, D., Mavrommatis, P., Wang, K.,
Modadugu, N. "The Ghost In The Browser Analysis of
Webbased Malware, " First Workshop on Hot Topics in
Understanding Botnets April 10, 2007, Cambridge, MA.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 2, NO. 4, NOVEMBER 2011 221

© 2011 ACADEMY PUBLISHER

