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Abstract—Differential Evolution (DE) is one kind of 
evolution algorithm, which based on difference of 
individuals. DE has exhibited good performance on 
optimization problem. The current studies almost are 
based on the simple random sampling method, and so 
this paper investigates other probability sampling 
methods, and proposed three novel differential 
evolution algorithms. The proposed algorithms are 
compared with the original differential evolution 
algorithm. The numerical results and Lorenz 
parameter estimation problem show that the new 
methods performed better than the original 
differential evolution algorithm. 

 
Index Terms—simple random sampling, stratified 
sampling, systematic sampling, cluster sampling, 
differential evolution, parameter estimation 

 

I.  INTRODUCTION 

Differential evolution (DE) is a stochastic, population-
based optimization method[1, 2], which has been 
successfully to a wide range of problems as summarized 
in Price[3]. A number of variations of DE have been 
developed in the past decade to improve the performance. 
These researches can be divided two aspects, one is 
parameter investigation such as the mutation factor and 
the crossover probability [4-8], and the other is 
theoretical analyses [9-14]. Tvrdik[4] provided an 
experimental comparison of two different self-adaptive 
patterns and influence of exponential crossover. Das et 
al.[5] provided two new improved variants of DE, DE 

with random scale factor and DE with time varying scale 
factor. Liu and Lampinen[6] introduced a new version of 
the Differential Evolution algorithm with adaptive control 
parameters – the fuzzy adaptive differential evolution 
algorithm, which used fuzzy logic controllers to adapt the 
search parameters for the mutation operation and 
crossover operation. Teo[7] presented a first attempt at 
self-adapting the population size parameter in addition to 
self-adapting crossover and mutation rates. Lu et al.[8] 
proposed a modified differential evolution by randomly 
initializing and calculating the scale factor by chaos each 
generation and introducing a disaster factor into 
differential evolution algorithm. Omran[9] proposed 
barebones differential evolution algorithm, BBDE, which 
is a hybrid algorithm by capitalizing on the strengths of 
both the barebones PSO and self-adaptive DE strategies. 
Muelas et al.[10] combined the explorative/exploitative 
strength of the memetic algorithm and differential 
evolution algorithm and proposed a hybrid algorithm. 
Wang et al.[11] presented a novel Differential Evolution 
(DE) algorithm, called DE enhanced by neighborhood 
search (DENS), which differs from pervious works of 
utilizing the neighborhood search in DE, such as DE with 
neighborhood search (NSDE) and self-adaptive DE with 
neighborhood search (SaNSDE). Zhang and Sanderson 
[12] proposed an analytical method to study the 
evolutionary stochastic properties of the population in 
differential evolution (DE) for a spherical function and 
developed the properties of mutation and selection based 
on which a Gaussian approximate model of DE Zhang 
and Sanderson[13] proposed a new differential evolution 
algorithm, JADE, which proposed a new mutation 
strategy “DE/current-to-pbest” with the optional archive 
and updated control parameters in an adaptive manner. 
Zhang et al. [14] proposed a center differential evolution 
algorithm with adaptive crossover factor; the new 
algorithm incorporated the center point of the population 
into the DE algorithm. 
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Simple random sampling method is used in all these 
researches. In this paper, we investigate the other three 
probability sampling methods and the three novel 
differential evolution algorithms are presented by 
applying these sampling methods into differential 
evolution algorithm. The proposed algorithms are 
compared with the original differential evolution 
algorithm. The numerical results and Lorenz parameter 
estimation problem show that the new methods 
performed better than the original differential evolution 
algorithm. 

The reminder of the paper is organized as follows: four 
different probability sampling methods are summarized 
in Section 2. Section 3 summarized the differential 
evolution algorithm. The three novel different evolution 
algorithms are presented in Section 4. Section 5 presents 
the numerical results and discussions. Parameter 
estimation for the Lorenz system is investigated in 
Section 6. Finally, Section 7 concludes the paper. 

II.  FOUR DIFFERENT PROBABILITY SAMPLING METHODS 

Probability sampling is a sampling technique wherein 
the samples are gathered in a process that gives all the 
individuals in the population equal chances of being 
selected. Probability sampling method has four different 
types, simple random sampling, stratified sampling, 
systematic sampling and cluster sampling. 

A. Simple Random Sampling 
Simple random sampling is the easiest form of 

probability sampling. This sampling method refers to a 
sampling method that has the following properties. 

(a)The population consists of N individuals. 
(b)The sample consists of n individuals. 
(c)All possible samples of n individuals are equally 

likely to occur. 
One of the best things about simple random sampling 

is the ease of assembling the sample. It is also considered 
as a fair way of selecting a sample from a given 
population since every member is given equal 
opportunities of being selected. 

B. Stratified Sampling 
Stratified sampling is a probability sampling technique 

wherein the researcher divides the entire population into 
different subgroups (called strata), then randomly selects 
the final individuals proportionally from the different 
subgroups. 

The strata do not overlap, as shown in figure 1, and 
they constitute the whole population so that each 
sampling unit belongs to exactly one stratum.  

1 2 H= + +...+N N N N                              (1) 

 
Figure 1.  Stratification 

If a simple random sample is taken in each stratum, the 
whole procedure is described as stratified random 
sampling. Stratified sampling consists of following steps: 

(a)The entire population is divided into distinct 
subpopulations. 

(b)Within each stratum, a separate sample is selected. 
(c)Separate stratum means (or other statistics) are 

computed and then properly weighted to form a 
combined estimate for the entire population. 

(d)The variances are computed separately within each 
stratum and then properly weighted and added into a 
combined estimate for the population. 

C. Systematic Sampling 
Systematic sampling is a random sampling technique 

which is frequently chosen by researchers for its 
simplicity and its periodic quality. In systematic sampling, 
the researcher first randomly picks the first item or 
subject from the population. Then, the researcher will 
select each n'th subject from the list. 

For example, the researcher has a population total of 
100 individuals and need 12 subjects. He first picks his 
starting number 5.Then the researcher picks his interval, 
8. The members of his sample will be individuals 5, 13, 
21, 29, 37, 45, 53, 61, 69, 77, 85, 97. 

D. Cluster Sampling 
In cluster sampling, instead of selecting all the subjects 

from the entire population right off, the researcher takes 
several steps in gathering his sample population. 

First, the researcher selects groups or clusters, and then 
from each cluster, the researcher selects the individual 
subjects by either simple random or systematic random 
sampling. The researcher can even opt to include the 
entire cluster and not just a subset from it.  

For example, a researcher wants to survey academic 
performance of high school students in China. 

(a)He can divide the entire population (population of 
China) into different clusters (cities).  

(b)Then the researcher selects a number of clusters 
depending on his research through simple or systematic 
random sampling.  

(c)Then, from the selected clusters (randomly selected 
cities) the researcher can either include all the high school 
students as subjects or he can select a number of subjects 
from each cluster through simple or systematic random 
sampling. 

E. Comparison of the Four Probability Sampling 
Methods 

Stratified sampling offers several advantages over 
simple random sampling. A stratified sample can provide 
greater precision than a simple random sample of the 
same size. Because it provides greater precision, a 
stratified sample often requires a smaller sample, which 
saves money. We can ensure that we obtain sufficient 
sample points to support a separate analysis of any 
subgroup. The main disadvantage of a stratified sample is 
that it may require more administrative effort than a 
simple random sample. The main disadvantage of cluster 
sampling is that cluster sampling generally provides less 
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precision than either simple random sampling or stratified 
sampling at the sample size. When the increased sample 
size is sufficient to offset the loss in precision, cluster 
sampling may be the best choice. Systematic sampling is 
to be applied only if the given population is logically 
homogeneous, because systematic sample units are 
uniformly distributed over the population. 

III.  DIFFERENTIAL EVOLUTION ALGORITHM 

Differential evolution (DE) is an evolutionary 
algorithm proposed by Storn and Price. The basic DE 
algorithm is described in detail below with reference to 
the four key operators: initialization, mutation, crossover 
and selection. 

Initialization: Before the population can be initialized, 
both upper and lower bounds for each parameter must be 
specified. Once initialization bounds have been specified, 
a random number generator assigns each parameter of 
every vector a value from within the prescribed range. 
For example, the initial value (g=0) of the jth parameter of 
the ith vector is 

i, j U, j L, j L, j(0) = rand(0,1)( - ) +x b b b            (2) 
The random number generator, rand (0, 1), returns a 

uniformly distributed random number from within the 
range [0,1].  

Mutation: Once initialized, DE mutates and 
recombines the population to produce a population of NP 
trial vectors. For each parent, ( )ix t , of generation t, a 

trail vector, ( )iu t , is created by mutating a target vector. 

The target vector, 3 ( )rx t , is randomly selected, with i≠r3. 

Then, two individuals 1( )rx t , and  are randomly selected 

with i≠r2≠r1, and the difference vector, ( ) ( )r1 r2x t - x t , is 
calculated. The trail vector is then calculated as  

( )3 1 2( ) = ( ) + ( ) - ( )i r r ru t x t F x t x t           (3) 
where the last term represents the mutation step size. In 

the above, F is a scale factor used to control the 
amplification of the differential variation. Note 
that ( )0, 2F ∈ . 

Crossover: DE follows a discrete recombination 
approach where elements from the vector, ( )ix t , are 

combined with elements from the trail vector, ( )iu t , to 

produce the offspring, ( )iv t . Using the binomial 
crossover, 

( ) ( )
( )

( )
i, j

i, j
i, j

u t if  rand 0,1 < Cr or j = r
v t =

x t otherwise
⎧⎪
⎨
⎪⎩

  

(4) 
where =j 1,2,...,D  refers to a specific dimension. 

r= rand(0, D). In the above, Cr is the probability of 
reproduction (with [ ]0,1Cr∈ ). 

Selection: DE evolution implements a very simple 
selection procedure. The generated offspring, ( )iv t , 

replaces the parent, ( )ix t , only if the fitness of the 
offspring is better than that of the parent. 

Storn and Price also proposed ten different strategies 
for DE based on the individual being perturbed, the 
number of individuals used in the mutation process and 
the type of crossover used. The strategy described above 
is known as DE/rand/1, meaning that the target vector is 
randomly selected, and only one difference vector is used. 
This strategy is considered to be the most widely used 
and it is the one used in this paper. Other main strategies 
include DE/best/1, DE/best/2, and DE/rand-to-best/1. The 
notation, DE/x/y, is used where x represents the 
individual being perturbed and y is the number of 
difference vectors used to perturb x. 

IV. THREE NOVEL DIFFERENTIAL EVOLUTION 
ALGORITHM 

In original differential evolution algorithm, the method 
used to generate trail vector and target vector is simple 
random sampling method. The mainly different between 
the three novel differential evolution and DE is that the 
method used in the three novel differential evolution 
algorithms to generate trail vector and target vector are 
not randomly selected, but stratified sampling method, 
systematic sampling method and cluster sampling method. 

A.Stratified Sampling Differential Evolution Algorithm  
The stratified sampling differential evolution algorithm 

(SSDE) uses the stratified sampling method to generate 
the trail vector and target vector. In order to use stratified 
random sampling method, a quick sorting method is 
employed to sort the population by fitness. NP represents 
the population size. The pseudo code of the stratified 
sampling process is listed in Algorithm 1. 

 Algorithm 1 The pseudo code of the stratified sampling 
process 

 getIndex (int* r1,int* r2,int* r3,int i){ 

0
1 

 Quick sort population by fitness; 

0
2 

//select the layer index 
int k1,k2,k3=rand(1,3) and k1≠k2≠k3;  

0
3 

  if(k1==1 and k2==2 and k3==3) 

0
4 

  *r1=rand(0,[NP/3]),* r2=rand([NP/3], [2NP/3]),  
*r3=rand([NP/3],NP]) and *r1 or *r2 or *r3≠i; 

0
5 

  if(k1==1 and k2==3 and k3==2) 

0
6 

*r1=rand(0,[NP/3]), *r2=rand([NP/3],NP]) , 
* r3=rand([NP/3], [2NP/3]) and *r1 or *r2 or *r3≠i; 

0
7 

  if(k1==2 and k2==1 and k3==3) 

0
8 

  * r1=rand([NP/3], [2NP/3]),*r2=rand(0,[NP/3]), 
 *r3=rand([NP/3],NP]) and *r1 or *r2 or *r3≠i; 

0
9 

  if(k1==2 and k2==3 and k3==1) 

1
0 

* r1=rand([NP/3], [2NP/3]), *r2=rand([NP/3],NP]) ,  
*r3=rand(0,[NP/3]) and *r1 or *r2 or *r3≠i; 

1
1 

  if(k1==3 and k2==1 and k3==2) 

1
2 

  *r1=rand([NP/3],NP]), *r2=rand(0,[NP/3]), 
* r3=rand([NP/3], [2NP/3]) and *r1 or *r2 or *r3≠i; 
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1
3 

  if(k1==3 and k2==2 and k3==1) 

1
4 

*r1=rand([NP/3],NP]) , * r2=rand([NP/3], [2NP/3]),  
*r3=rand(0,[NP/3]) and *r1 or *r2 or *r3≠i; 

1
5 

} 

B.Systematic Sampling Differential Evolution Algorithm  
The systematic sampling differential evolution 

algorithm (SYSDE) uses the systematic sampling method 
to generate the trail vector and target vector. The pseudo 
code of the systematic sampling process is listed in 
Algorithm 2. 

 Algorithm 2 The pseudo code of the systematic sampling 
process 

 getIndex (int* r1,int* r2,int* r3,int i){ 

0
1 

     *r1=rand(0,[(NP-NP%3)/3]) and *r1≠i; 

0
2 

     *r2=*r1+(NP-NP%3)/3; 

0
3 

     *r3=*r2+(NP-NP%3)/3; 

0
4 

} 

C.Cluster Sampling Differential Evolution Algorithm  
The cluster sampling differential evolution algorithm 

(CDE) uses the cluster sampling method to generate the 
trail vector and target vector. The pseudo code of the 
cluster sampling process is listed in Algorithm 3. 

 Algorithm 3 The pseudo code of the cluster sampling process 

 getIndex (int* r1,int* r2,int* r3,int i, int NC ){ 

0
1 

//randomly select the subgroup index. 
t=rand(0,NC); 

0
2 

//calculate the number of individual in each subgroup. 
count=(NP-NP%NC)/NC; 

0
3 

//calculate the start number of the selected subgroup. 
startNum=(NP-NP%N)/N*temp; 

0
4 

 endNum=startNum+count; 

0
5 

 *r1=rand(startNum,endNum), and *r1≠i; 

0
6 

*r2=rand(startNum,endNum), and *r2≠*r1≠i; 

0
7 

*r3=rand(startNum,endNum), and *r3≠*r1≠*r2≠i; 

0
8 

} 

V.  EXPERIMENTAL RESULTS 

This section compares the performance of the SSDE 
algorithm, SYSDE algorithm and CDE algorithm with 
the original differential evolution algorithm (SDE). 

The following functions have been used to compare 
the performance of SSDE, SYSDE and CDE with SDE. 
These benchmark functions provide a balance of 
unimodal and multimodal functions. 

A .Sphere function, defined as  

( ) 2
D

i
i=1

f = x∑x  

where ( ) ( )0,0,...,0 0* = , f * =x x  

 for [ ]-100,100ix ∈ . 
B. Schwefel’ s problem 2.22, defined as 

( )
1 1

DD

i i
i= i=

f = x + x∑ ∏x  

where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-10,10ix ∈ . 
C. Step function, defined as 

( ) ( )
2

1

D

i
j=

f = x +0.5⎢ ⎥⎣ ⎦∑x  

where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-100,100ix ∈ . 
D. Rosenbrock function, defined as 

( ) ( ) ( )
1 2 22

1

100 1
D-

j j+1 j
j=

f = x - x + x -⎡ ⎤
⎢ ⎥⎣ ⎦∑x  

where ( ) ( )1,1,...,1 0* = , f * =x x  

for [ ]-30,30ix ∈ . 
E. Rotated hyper-ellipsoid function, defined as 

( )
2

1 1

D i

j
i= j=

f = x
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑x  

where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-100,100ix ∈ . 
F. Generalized Swefel’s problem 2.26, defined as 

( ) ( )
1

D

i i
j=

f = -x sin x∑x  

where ( )420.9678, 420.9678,..., 420.9678* =x

( ) -12569.5f * =x for [ ]-500,500ix ∈ . 
G. Rastrigin function, defined as 

( ) ( )
1

10 2 10
D

2
i i

j=

f = x - cos πx +⎡ ⎤⎣ ⎦∑x  

where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-5.12,5.12ix ∈ . 
H. Ackley’s function, defined as 

( )

( )

2

1

1

1-20 -0.2

1 2 20

D

i
i=

D

i
i=

f = exp x
D

            - exp cos πx + +e
D

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑

x
 

where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-32,32ix ∈ . 
I. Griewank function, defined as 

( ) 2

1 1

1 1
4000

DD
i

i
i= i=

xf = x - cos +
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∏x  
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where ( ) ( )0,0,...,0 0* = , f * =x x  

for [ ]-600,600ix ∈ . 
J. Six-hump Camel-back function, defined as 

( ) 2 4 6 2 4
1 1 1 1 2 2 2

14 2.1 4 4
3

f = x - x + x + x x - x + xx  

where ( )-0.08983,0.7126* =x  

( ) -1.0316285f * =x for [ ]-5,5ix ∈ . 
Sphere, Schwefel’s problem 2.22, Rosenbrock and 

Rotated hyper-ellipsoid are unimodal, while the Step 
function is a discontinuous unimodal function, 
Schwefel’s problem 2.26, Rastrigin, Ackley and 
Griewank are difficult multimodal functions where the 
number of local optima increase exponentially with the 
problem dimension. The Camel-back function is a low-
dimensional function with only a few local optima. 

For all the algorithms used in this section, the 
population size NP set 100. All functions were 
implemented in 30 dimensions except for the two-
dimensional Camel-back function. The results reported in 
this section are averages and standard deviations over 50 
simulations. Each simulation was allowed to run for 
50,000 evaluations of the objective function. F=0.5 and 
Cr=0.1, used DE/rand/1/bin strategy. 

Table 1 summarizes the results obtained by applying 
the different approaches to all benchmark functions. The 
results show that the CDE, SSDE and SYSDE performed 
better than DE. The SSDE performed best than other 
three approaches. Fig.2 illustrates results for the selected 
benchmark functions. For the Sphere function, Fig.2a 
shows that SSDE achieved a faster reduction in fitness 
than SYSDE, CDE and SDE. For the Rosenbrock 
function, Fig.2b shows that SSDE achieved a faster 
reduction in fitness than SYSDE, CDE and SDE, and 
reached a good solution faster than the other approaches. 
For the Rotated hyper-ellipsoid function, Fig.2c shows 
that SSDE reached a good solution than other algorithms. 
For the Schwefel problem 2.26 function, Fig.2d shows 
that SSDE reached a good solution faster than the other 
approaches. For the Rastrigin function, Fig.2e shows that 
SDE achieved a faster reduction in fitness than the other 
approaches, but SSDE and CDE obtained a good solution 
than the other approaches. For the Ackley function, Fig.2f 
shows that SSDE achieved a faster reduction in fitness 
than the other approaches.  

TABLE I.   
MEAN AND STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 

50 RUNS 
Function SDE SYSDE CDE SSDE 
Sphere 0.00115

7 
(0.0002
53) 

0.000072 
(0.00001

8) 

0.000725 
(0.00032

4) 

0.00000
(0.00000

) 

Schwefel 
Problem2.22 

0.00491 
(0.0005

5) 

0.00129 
(0.00017) 

0.00367 
(0.00074

) 

0.00004
(0.00001

)
Step 0.00000 

(0.0000
0) 

0.00000 
(0.00000) 

0.00000 
(0.00000

) 

0.00000
(0.00000

) 
Rosenbro

ck 
151.788 
(23.856) 

73.267 
(19.6488) 

144.566 
(36.9609

40.64422
7 

) (21.0556
)

Rotated 
hyper-

ellipsoid 

19786.7
39 

(2888.4
4) 

18660.52
12 

(2485.94) 

19789.39
76 

(3230.92
) 

15844.92
44 

(2219.54
)

Schwefel 
problem 

2.26 

11509.4
72 

(312.02
77) 

-
12315.330 

(206.565
34) 

-
12168.749 

(256.681
7) 

-
12569.483

(0.00364
) 

Rastrign 40.7606
31 

(4.0991
00) 

37.56236
5 

(3.18099
5) 

36.83629
5 

(4.48831
8) 

5.76638
(3.06823

) 

Ackley 0.00993
1 

(0.0012
64) 

0.002387 
(0.00029

8) 

0.007937 
(0.00194

9) 

0.00011
(0.00002

) 

Griewank 0.00925
9 

(0.0027
4) 

0.001280 
(0.00097) 

0.006949 
(0.0048) 

0.00001
(0.00000

1) 

SixJump -
1.031628

(0.0000
00) 

-
1.031628 

(0.00000
0) 

-
1.031628 

(0.00000
0) 

-
1.031628 

(0.00000
0) 

Figure.3 illustrates diversity for selected benchmark 
functions. Diversity has been calculated using  

( ) ( )( )2

1 1

1 POPSIZE D

ij j
i= j=

diversity = x t - x t
POPSIZE ∑ ∑

   where jx  is the average of the jth dimension over all 

individuals, i.e. ( ) ( )
1

1 t

j ij
i=

x t = x t
POPSIZE∑ . 
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Figure 2.  Performance comparison of the different methods for 

selected benchmark functions 
For the Sphere function, Fig.3a shows that the SSDE 

exhibited the fasted reduction in diversity enabling it to 
converge faster the other approaches. For the Rosenbrock 
function, Fig.3b shows that the SSDE exhibited the fasted 
reduction in diversity enabling to converge faster than the 
other approaches. The SDE was the slowest reduction in 

diversity which might cause its slow convergence. For the 
Rotated hyper-ellipsoid function, Fig.3c shows that SSDE 
achieved a faster reduction in diversity than other 
algorithms. For the Schwefel problem 2.26 function, 
Fig.3d shows that diversity increased firstly and then 
decreased, and SSDE exhibited the fasted reduction in 
diversity enabling to converge faster than the other 
approaches. For the Rastrigin function and Ackley, Fig.3e 
and Fig.3f show that SSDE exhibited the fasted reduction 
in diversity enabling to converge faster than the other 
approaches. 
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(c)Rotated hyper-ellipsoid 
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(d)Schwefel problem 2.26 
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(e) Rastrigin
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(f) Ackley(zoomed) 

Figure 3.  Diversity comparison of the different methods for 
selected benchmark functions 

VI.  PARAMETER ESTIMATION IN THE LORENZ MODEL 

The Lorenz model has been widely used for studies 
involving prediction and data assimilation in chaotic 
systems. The model consists of three variables x, y and z, 
which evolve according to the equations 

( )'x = a y - x                                     (5) 
'y = bx - y - xz                                    (6) 

'z = xy - cz                                       (7) 
where a,b,c are three constant parameters that are 

generally given the values 10, 28 and 8/3, respectively. 
For these values, the model variables follow a highly 
chaotic orbit. All calculations in this paper were 

performed using a fourth-order Runge-Kutta method with 
a time-step of 0.01. 

The optimization model is established as follows: 
2

1

1min
M

k k
k=

ε= X -Y
M ∑                              (8) 

where M is the sequence length of state variable, 
Xk(k=1,2,…,M) is the kth state variables sequence at the 
true value of parameters of chaotic system, and Yk 
(k=1,2,…,M) is the kth state variables sequence at the 
estimated value of parameters of chaotic system. For the 
Lorenz chaotic system, a, b, c are the decision variable.  

For all the algorithms used in this section, the 
population size NP set 60. The results reported in this 
section are averages and standard deviations over 20 
simulations. Each simulation was allowed to run for 
30,000 evaluations of the objective function. F=0.5 and 
Cr=0.1, used DE/rand/1/bin strategy. 

Table 2 summarizes the best solution obtained by 
applying different approaches. The results show that the 
SSDE obtained the best one of the four solutions. Table 3 
summarizes the statistical results obtained by applying 
different approaches. The results show that SSDE 
performed better than the other methods in all means and 
standard deviation of parameters and best fitness. 

TABLE II.   
COMPARISON OF THE BEST SOLUTION BY DIFFERENT METHODS 

 SDE SYSDE CDE SSDE 

a 10.022700 9.926893 10.00486
0 

10.00266
9 

b 27.991236 28.06291
8 

27.99797
0 

27.99363
6 

c 2.668656 2.667592 2.667006 2.665797

ε  0.219830 0.239681 0.149356 0.045487

TABLE III.   
STATISTICAL RESULTS OF DIFFERENT METHODS  

 SDE SYSDE CDE SSDE 

a 10.06818 
(0.23197)

10.0367
7 

(0.17154
) 

10.0591 
(0.21308

) 

10.0155
8 

(0.03012
) 

b 27.93083 
(0.19324)

27.9560
8 

(0.14123
) 

27.9426
5 

(0.20195
) 

27.9852
7 

(0.03098
) 

c 2.66419 
(0.00919)

2.66397 
(0.00672

) 

2.66514 
(0.01321

) 

2.66622
(0.00232

) 
ε  0.910464 

(0.385202)
0.74756

0 
(0.25534

2) 

0.95532
1 

(0.82030
) 

0.15020
4 

(0.08661
1) 

Figure 4 illustrates performance comparison of the 
different methods for Lorenz parameter estimation 
problem. Figure 4a shows that SSDE achieved a faster 
reduction in fitness and reached a good solution than the 
other approaches. Figure 4b shows that SSDE exhibited 
the fasted reduction in diversity enabling to converge 
faster than the other approaches. 
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Figure 4.  Performance comparison of the different methods 

for Lorenz parameter estimation problem 

VII.  CONCLUSIONS 

This paper presented three different models for 
differential evolution algorithm by investigating three 
probability sampling method. These approaches were 
compared with the simple random sampling method 
which used in the original differential evolution algorithm. 
The results show that these methods performed better 
than the original method in all selected benchmark 
functions. The results also show that the SSDE performed 
better than the SYSDE and CDE. This paper also 
investigated the parameter estimation problem, compared 
the results obtained by the proposed three algorithms and 
original differential evolution algorithm in the Lorenz 
parameter estimation problem. The results show that the 
SSDE performed best than the other strategies. 
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