
A New Approach on Cluster based Call
Scheduling for Mobile Networks

P. K. Guha Thakurta

Department of CSE, NIT, Durgapur-713209, India

Email: parag.nitdgp@gmail.com

Saikat Basu1, Sayan Goswami2, Subhansu Bandyopadhyay3

Department of Computer Science, Louisiana State University, USA1 ,
Sapient Global Markets, India2

Department of CSE, University of Calcutta, Kolkata-700009, India3
Email: sbasu8@lsu.edu1, sayan.nitd@gmail.com2, subhansu@computer.org3

Abstract— An efficient cluster based approach on call

scheduling in mobile networks is proposed in this paper.

The dynamic threshold value (τ) is formulated with

justification. The clusters are formed on the basis of defined

threshold value. The cluster head has been selected with

respect to different weight metrics for improving call

scheduling. The leader (cluster head) election procedure is

also described for link breakage and link emergence

respectively. After the formation of clusters, the subsequent

call scheduling algorithm has also been outlined in detail in

this work.

Index Terms—Mobile computing, clustering, call scheduling,

Routing, Dynamic thresholding.

I. INTRODUCTION

The rapid growth of cellular telephony needs efficient
resource allocation strategies. Hence, an effective call
selection procedure is also required at the same time.
During network congestion, Call Admission Control
(CAC) strategy is used to give permission to limited
number of users as well as deny service for rest of the
users [3]. Consequently, Quality of Service (QoS)
becomes an important factor for admitted users. It is
therefore necessary to consider two near contradictory
requirements – allocating resources as well as ensuring
Quality of Service (QoS) when all users are trying to
make a request at the same time.

Nodes communicate with each other using multi-hop
links in mobile cellular networks. Each node in the
network has call forwarding capability to other nodes. So,
various routing strategies [11] have been designed to
address the problem of finding the routing path. The
cluster based routing protocol proposed in [9] assumes
that the mobile nodes are location-aware. The procedure
behind the foundation of location different neighbor’s

location with respect to a specific node is beyond the
scope of this work. One of the most important parameters
to be considered for leader election in a cluster is the
congestion metric. However, a limitation in the proposed
routing protocol in [10] has been observed regarding this

issue. An efficient call scheduling procedures known as
Priority based Tree Generation for mobile networks
(PTGM) in [1] has described a tree based methodology
with the foundation of unique path sequence. This tree
based call scheduling procedure has been mapped into
Cartesian coordinate system, with mobile terminal (MT)
placed at the origin (0,0). Hence, other cells are
represented as points in the coordinate system with
following certain criteria [2]. This coordinate based
routing protocol (CSTR) has been formulated with the
help of a tree structure and all possible routing paths
could also be enumerated in a simple manner. This
routing path analysis needs a more efficient methodology
to increase throughput and reduce network latency at the
same time.

In this paper, a new constraint based spatial clustering
algorithm has been designed for call scheduling. This
algorithm is based on a dynamic threshold value. This
threshold value has been formulated with respect to the
Euclidian distances between the cells of the coordinate
based system representation in [2]. On the basis of
threshold value, the different clusters of cells could be
formed and hence, a new clustering algorithm is proposed.
The positional identity (x,y) of each cell is broadcast to
all other cells in the network. Consequently, it causes
congestion known as Broadcast Storm. To prevent it, a
new multicast clustering algorithm is also proposed in
this paper. Once the clusters have been formed, the leader
election in a cluster is done with a weight based
algorithm to reduce the searching complexity to a large
extent. This weight is quantified with respect to different
performance metrics. Due to the emergence of new nodes
or disappearance of the existing ones in/from the network,
the cluster leader needs to be updated. Hence, two
algorithms named as link_emergence and link_breakage
have been proposed. The formation of clusters and call
scheduling through the clustered nodes have been
discussed in detail. The simulated result of performance
analysis for the system is also shown in terms of QoS of
the network.

184 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jait.3.3.184-190

The rest of this paper is organized as follows. In
section 2, a brief description of coordinate based routing
protocol (CSTR) is provided for completeness of the
work. The different issues of the proposed model are
described with various algorithms in section 3. The
experimental results are discussed in section 4. The
section 5 concludes the advantages of the proposed model
with future scope.

II. COORDINATE BASED SEARCH TREE GENERATION WITH
THE DETERMINATION OF ROUTING PATHS (CSTR) [2]

In this model, MT is denoted by (0,0) and each other
cell is having a coordinate of the form (x,y). The cells
covered by the radius r (within transmission covering
range [3]) of MT are mapped as (x,y+1), (x+1,y+1) and
(x+1,y) such that x+1 ≤ r and y+1 ≤ r. For example, in

Fig. 1(a), cell numbers C13, C12 and C11 of r = 1 in [1] are
mapped into (1,0), (1,1) and (0,1) respectively. Therefore,
cellular structure of mobile networks detected in [1]
could be mapped into a coordinate based system as
shown in Fig. 1(b).

Fig. 1(a): Cellular structure for Mobile Networks

for r=3

Fig. 1(b): Coordinate based representation of Fig.

1(a) (in [2])

III. THE PROPOSED MODEL

The model proposed in this paper is the collection of
several functional events in a sequential manner. These
are listed as follows:

(i) Determination of threshold value;
(ii) Formation of Constraint based Spatial Clustering

Algorithm and identification of broadcast storm;
(iii) Prevention of broadcast storm by using multicast

clustering algorithm;
(iv) Introduction of weight metric and subsequent

proposal of a leader election algorithm for the reduction
of searching complexity;

(v) The necessity of dynamic link handling using
weighted mobility-adaptive leader election algorithm;

A. Determination of Threshold Value

 The threshold value selection for a cluster based
system reflects the number of clusters obtained. If the
threshold value is very small, then there would be a high
number of clusters and consequently each connected
component size becomes quite small. So it results in a
low throughput. On the other hand, the reverse situation
would occur for the high threshold value. This leads to
high congestion and latency. The threshold values could
be defined as follows:

Threshold (τ) =

where, D denotes the distance between the two farthest
cells in radius r,
N denotes the total number of cells in radius r,
max and min denotes the maximum and minimum
Euclidian distances between cells belonging to radii i and
j respectively.

Considering Fig. 1(a) and Fig. 1(b), the threshold value
would be 0.56 for cells belonging to radius r = 2 and
1.618 for that of r = 1 and r = 2.

B. Constraint Based Spatial Clustering Algorithm

 Once the threshold value is determined, the clustering
process [12] is initiated. Here, the metric used is the
positional identity (x,y) of the cell, where x denotes the
position of the cell along the X-axis and y denotes its
position along the Y-axis. Each cell advertises its
positional identity to adjacent cells in the form of
broadcast packets. It is performed in the network as
shown in Fig. 1(b). Now, the difference between the
positional identity values of the two cells is compared
with the predefined threshold values. If it is less than the
threshold value, an edge is constructed between the two
vertices (cells). Otherwise, no edge exists between these
two cells. Hence, a number of connected components
(clusters) are obtained, maintaining the tradeoff between
throughput and latency. This procedure is described by
the following algorithm.

Algorithm:

begin

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012 185

© 2012 ACADEMY PUBLISHER

Set the threshold value τ

for each cell i

 positional identityi (xi, yi)

 BROADCAST_PACKET (positional identityi) /*

sends a broadcast packet to all of its neighbors */

end for

for each cell j

 while RECEIVE_PACKET() is not NULL

 (xi, yi) positional identityi

 diff SQRT ((xi – xj)
2
 + (yi – yj)

2
)

 if diff < τ

 construct an edge eij between vi and vj

 else

 continue

 end if

 end while

end for

end

The various functions used in the above algorithm are:

1) BROADCAST_PACKET() – Advertises the
positional identity of a cell to all the adjacent
cells in the network.

2) RECEIVE_PACKET() – A cell receives a
packet from an adjacent cell using this routine.

A major problem has been identified in the above
algorithm known as broadcast storm. Due to the
broadcasting of packets, it may happen that there would
be the possibility of multiple copies of the same packet
reaching any particular cell. Subsequently, it causes
network congestion.

C. Prevention of Broadcast Storm

 A multicast clustering algorithm has been proposed to
prevent broadcast storm. The key feature of this
algorithm is that – sending multicast packets to the
neighbors except the one from which it receives a
multicast packet. This prevention procedure is described
by the following multicast clustering algorithm.

Algorithm:

begin

Set the threshold value τ

for a particular cell i

 positional identityi (xi, yi)

 MULTICAST_PACKET (positional identityi) /*

sends a multicast packet to all the neighbors but one cell

at a time */

end for

for each cell j ϵ NEIGHBOR(i)

 while RECEIVE_PACKET() is not NULL

 (xi, yi) positional identityi

 diff SQRT ((xi – xj)
2
 + (yi – yj)

2
) /* SQRT

returns the square root */

 if diff < τ

 construct an edge eij between vi and vj

 else

 continue

 end if

 MULTICAST_PACKET (positional identityj) /*

repeat the process for each neighbor */

 end while

end for

end

The functions used:
1) MULTICAST_PACKET() - Advertises the

positional identity of a cell to all the adjacent
cells in the network except the one from which it
itself received the multicast packet.

2) RECEIVE_PACKET() – A cell receives a
packet from an adjacent cell using this routine.

D. A New Approach towards Leader Election

 Once the clusters have been formed, the next step is to
design an efficient leader election algorithm. Leader
election is a fundamental control problem in both wired
and wireless systems [4]. A leader is required in a group
communication system to handle the transmission of
messages to the members of the group. Here, it is
represented by a cluster-head of a cluster. The dynamic
cluster-head selection is required for the constant change
of the network topologies. The weights (W) are assigned
to each member of the cluster. The maximum weighted
member is to be considered as the cluster-head. These
weights are dependent on the following parameters.
1) Degree of a vertex (cell): This denotes the number of
cells (D) connected to that specific cell. If the degree of
the cell is higher, then it has a greater probability of being
elected as a cluster-head due to nearest neighborhood
principle [5].
2) Mean of the distances: This parameter (δ) represents
the mean of the distances of a cell from its neighbors. If
the value of δ is small, then its probability of being

elected as a cluster-head is higher.
3) Counter values associated with each cell (C): The
concept of counters was introduced in [6]. The counter
values are increased with respect to time and provide a
measure of the congestion level along a specific path.
Naturally, higher counter value of a particular cell means
high congestion. Subsequently, it has a lower probability
to be elected as the cluster-head.

Once all the parameters have been quantified, the
weight (W) can be defined as follows.

W α

The leader election algorithm runs recursively and

eventually terminates after electing a unique cluster-head
for each cluster. This algorithm is comprised of the
following procedures.

ELECT_HEAD () – Any cell which has no cluster-
head begins a diffusing computation [7] and calls this
procedure. This in turn sends the elect_head message to
all its neighbors.

RECV_MSG () -- When a cell receives an elect_head
message through the RECV_MSG () procedure, it sets
the sending cell as its parent.

186 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

SEND_NODE () -- It returns the cell (Cij) which sent
the last message to the receiving cell.

SEND_ACK () -- If a cell receives an elect_head
message from a non-parent cell, then it returns an ACK
message to the cell. This message contains the
information about the current best valued cell and its
identity in the cluster. This is a recursive procedure which
continues until a unique leader is chosen for the cluster.

SEND_NAK () -- This procedure is called when a
cell has received an elect_head message from another cell
that is designated as its parent.

BROADCAST_PACKET () – When the cell initiates
the diffusing computations, subsequently it learns about
the leader. Then, it sends a broadcast packet to all other
cells belonging to the cluster using this procedure.

On the basis of the defined procedures, an algorithm is
described for the cluster-head selection problem
considering the highest weighted node as follows.

Algorithm:

Leader_selection()
begin

for each cluster Ci do

 for each node Ai in Ci do

 while CLUSTER_HEAD(Ai) is NULL

 ELECT_HEAD (Ai)

 end while

 end for

 for any node Aj in Ci

 if RECV_MSG () == elect_head /*

elect_head message sent by the ELECT_HEAD ()

procedure */

 if SEND_NODE () == PARENT(Aj) /*

indicates the parent of Ai in the spanning tree */

 SEND_NAK (PARENT (Aj))

 else

 SEND_ACK (recv_node) /*

indicates the node from which the elect_head message

was received by the node Aj */

 else if for all nodes ∈ CHILD(Aj)

 RECV_ACK () == true

 then SEND_ACK (PARENT (Aj))

 end if

 end if

 end for

 if for all nodes Aj ∈ CHILD(Ai) /* CHILD (Ai)

returns the children of the node Ai in the spanning tree */

 RECV_ACK () == true

 then BROADCAST_PACKET (leader) /* leader

indicates the most valued node based on the weight */

 end if

 end for

end

E. Weighted Mobility Adaptive Leader Election

 The leader election problem defined in the previous
section has been described from the static point of view.
The weights of each node are to be calculated during link
breakage (i.e., when one or more nodes are detached from

the cluster) or link emergence (i.e., when new nodes are
added to the cluster). Subsequently, the leader election
algorithm is updated, considering these two cases.

1) Link Breakage: If a link fails, then the nodes
connected through the link is detached from the cluster.
In the proposed algorithm, two new message packets
namely ping and response are introduced. All nodes keep
on sending ping packets to adjacent nodes to check the
condition of their links. Whenever a node receives a ping
packet, it replies with a response packet. So, once a node
has sent a ping packet and has not received a response
from a particular node, this means the link has failed.
Consequently, the nodes participate in a leader election
mechanism to choose a new leader. This process is
described by the following algorithm.

Algorithm:

begin

 for each node Ai in Ci

 for every other node Aj in Ci

 SEND_PACKET (ping)

 end for

 end for

 for each node Ai in Ci

 if RECEIVE_PACKET () == response

 continue

 else

 Leader_selection () /* calls the main

Leader selection algorithm for determining the new

leader */

 end if

 end for

end

The procedures used in the above algorithm are:
1) SEND_PACKET(ping) – Send a ping packet to

adjacent nodes to check the condition of the link.
2) RECEIVE_PACKET () - Receives a packet from

adjacent nodes.
3) Leader_selection () – The main leader election

algorithm proposed in section III.D.

2) Link Emergence: When a new cell site appears in
the network, then a new base station is added to include
the cell site in the cellular network. Then a new link
comes up that connects the Base Station to the network.
In this situation, two cases may occur. Either the new
node(cell) has a weight less than that of the current
cluster-head or greater than that. If the weight of
currently arrived node is greater than the cluster head,
then a packet with its own value and the link information
is broadcast to the others in the cluster. Accordingly, the
cluster head is updated and subsequently, all nodes of the
cluster are informed of the changes. Otherwise, the new
node is simply registered in the cluster. This process is
described by the following algorithm.

Algorithm:

begin

 for each node Ai added to Ci

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012 187

© 2012 ACADEMY PUBLISHER

 if weightAi < weightclusterhead

 Ci Ci ∪{Ai}

 else

 BROADCAST_PACKET (leader, Ai)

 /* broadcasts a packet declaring itself as the leader

and passing its control information to other nodes */

 end if

 end for

end

The procedure used:
BROADCAST_PACKET () – The node with the

highest weight broadcasts a packet declaring itself as the
leader and passing its control information to other nodes.

CALL SCHEDULING

Once the clusters are formed and maintained, these can

be used to handle incoming call requests. When a mobile
node sends a call request, the call is forwarded to the
corresponding Base Station which is then forwarded to
the cluster-head of the corresponding cluster. This
cluster-head then forwards the call to the cluster-head of
the cluster to which the call is to be forwarded. The
cluster-head then forwards the call to the base station of
the call receiving node and subsequently forwarded to the
call receiving node.

So, the path of the call request can be represented as
follows:

CS BSS LeaderS LeaderR BSR CR

Where, CS, BSS and LeaderS denote the sender side and

CR, BSR and LeaderR denote the receiver side.

CALL ROUTING BETWEEN LEADERS AND

LEADERR

Once the LeaderS and LeaderR cells have been

predetermined, the next step is to find the shortest path
between LeaderS and LeaderR. This is done by using the
Kruskal’s algorithm. This algorithm finds a minimum

spanning tree for a connected weighted graph. So, to map
our problem to the Kruskal’s algorithm, a connected
weighted graph is constructed where the cluster-heads
represent the vertices and the edges are represented by
weights that denote the Euclidean distances between the
nodes. For sake of completeness the Kruskal’s algorithm

is presented next.

Algorithm:

 Kruskal(G = <N, A>: graph; length: A → R
+
): set of

edges

 Define an elementary cluster C(v) ← {v}.

 Initialize a priority queue Q to contain all edges in

G, using the weights as keys.

 Define a forest T ← Ø //T will ultimately contain

the edges of the MST

 // n is total number of vertices

 while T has fewer than n-1 edges do

 // edge u,v is the minimum weighted route from u

to v

 (u,v) ← Q.removeMin()

 // prevent cycles in T. add u,v only if T does not

already contain a path between u and v.

 // the vertices has been added to the tree.

 Let C(v) be the cluster containing v, and let C(u)

be the cluster containing u.

 if C(v) ≠ C(u) then

 Add edge (v,u) to T.

 Merge C(v) and C(u) into one cluster, that is,

union C(v) and C(u).

 return tree T

The above algorithm can be shown to run in O(E log E)
time, or equivalently, O(E log V) time, all with simple
data structures. These running times are equivalent
because:

 E is at most V2 and logV
2 = 2logV is O(log V).

 If we ignore isolated vertices, which will each be
their own component of the minimum spanning
forest, V ≤ E+1, so log V is O(log E).

 Next the call scheduling algorithm is presented.

Algorithm:
Call_Schedule (Call ti)

begin:

forward call from calling node CSi to base station BSSi

forward call from base station BSSi to cluster-head HSi

G FORM_GRAPH(network N)

min_span_tree T Kruskal(G)

Edge set {E} SELECT_EDGE_SET(HSi, HRi)

forward call from cluster-head HSi to cluster-head HRi

forward call from cluster-head HRi to base station BSRi

forward call from base station BSRi to receiver node CRi

end

The functions used are presented below:
1) FORM_GRAPH(network N) – Forms a connected

weighted graph from network N with the mobile
nodes as vertices and connecting links as edges
having weights equal to the Euclidean distances
between the nodes.

2) SELECT_EDGE_SET(HI, HJ) – Selects the edge
set joining the cells HI and HJ in the minimum
spanning tree T.

The time required for cluster formation is already
evaluated in [13, 14]. So, the methodology proposed
here reduces the computation time to a large extent
with respect to previous approaches.

IV. EXPERIMENTAL RESULTS

The proposed model is simulated with Matlab 7.5.0.
Here, the result shows the effect of clustering on call
scheduling. The Fig. 2 shows the congestion in the
network with respect to various cells with and without

188 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

clustering. The weight metric used is the counter values
that were introduced in [6] and discussed in Section III.D.
The counter values are an effective measure for the
network congestion with respect to the traffic requests
being handled by a given Base Station(cell) at a given
point of time. The x-axis gives the id’s of the various

cells in the network. Thus, e.g., 250 here refers to cell
C250. Random calls were initiated with a pseudo-random
number generator. The algorithm was executed for 100
iterations and the average
values of the Weight metric(C) were plotted as the graph
shown in Fig.2.

Fig. 2. Congestion in the network for various cells

Quality of Service(QoS)

The Quality of Service(QoS) is inversely proportional to
the congestion in the network. So, the QoS metric(Q)
increases when the congestion metric(C) decreases and
vice versa.
This can be mathematically represented as :

QoS(Q) α

The Quality of Service metric Q can be parametrically
represented as the following mathematical formulation:

Where, -µ + minimum value of log

µ is a predefined constant having value 0.5. The value of
µ is chosen in such a way in order to make the parameter
Q to assume positive values only.
Hence we get the following graph for QoS versus the
cells.

Fig 3. Quality of Service(QoS) for various cells

V. CONCLUSION

The procedure for cluster based call scheduling

methodology has been described in this work. The
searching cost is reduced for using the cluster head in
routing. At the same time, the leader (cluster head)
election algorithm has been enhanced with the inclusion
of link_breakage and link_emergence procedures. So, it
increases the flexibility of dynamic call scheduling. The
use of Kruskal’s algorithm for finding the shortest path

and the subsequent call scheduling algorithm proposed in
this paper are reactive call scheduling strategies that,
though efficient in terms of storage costs require higher
computational resources because the Shortest paths have
to found out each time a call is initiated. This problem
can be solved by maintaining routing tables.
Further study on extending this model for construction of
routing tables is in progress.

REFERENCES

[1] P.K.Guha Thakurta and Subhansu Bandyopadhyay, “A

New Dynamic Pricing Scheme with Priority based Tree
Generation and Scheduling for Mobile Networks”, IEEE

Advanced Computing Conference, March 2009.
[2] P.K.Guha Thakurta, Rajarshi Poddar and Subhansu

Bandyopadhyay, “A New Approach on Co-ordinate based
Routing Protocol for Mobile Networks”, IEEE Advanced

Computing Conference, February 2010 .
[3] Wen-Hwa Liao, Jang-Ping Sheu and Yu-Chee Tseng,

“GRID: A Fully Location-Aware Routing Protocol for
Mobile Ad Hoc Networks”, Journal on Telecommunication

Systems, Springer Netherlands, Vol 18, No. 1-3,
September 2001.

[4] Sudarshan Vasudevan, Jim Kurose and Don Towsley,
“Design and Analysis of a Leader Election Algorithm for

Mobile Ad Hoc Networks”, IEEE ICNP, 2004, page(s):

350-360.
[5] C. Bohm and F. Krebs, “The k-nearest neighbour join:

Turbo charging the kdd process”, Journal on Knowledge

and Information Systems, Vol. 6, No. 6, 2004.
[6] P.K.Guha Thakurta, Subhansu Bandyopadhyay, S. Basu

and S. Goswami, “A new approach on Congestion Control

with Delay Reduction in Mobile Networks”, Second

International Conference on Advances in Recent
Technologies in Communication and Computing
(ARTCom), October, 2010.

[7] E. J. Dijkstra and C.S. Scholten, “Termination detection

for diffusing computations”, In Information Processing

Letters, Vol. 11, No. 1, pp. 1-4, August 1980.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012 189

© 2012 ACADEMY PUBLISHER

[8] Joseph. B. Kruskal, “On the Shortest Spanning Subtree of a

Graph and the Traveling Salesman Problem”, In

proceedings of the American Mathematical Society, Vol 7,
No. 1 (Feb, 1956), pp. 48–50.

[9] Liliana M. Arboleda C. and Nidal Nasser, “Cluster-based
routing protocol for mobile sensor networks”. In

Proceedings of the 3rd international conference on Quality
of service in heterogeneous wired/wireless networks
(QShine '06). ACM 2006, New York, NY, USA, Article 24.

[10] M. Rezaee and M. Yaghmaee, “Cluster based Routing

Protocol for Mobile Ad Hoc Networks”, InfoComp, Vol 8,

No 1, March 2009, pp 30-36.
[11] Rana E. Ahmed, “A Fault-Tolerant Routing Protocol for

Mobile Ad Hoc Networks”, Journal of Advances in

Information Technology, Volume 2, Number 2, May 2011,
Page (s): 128 – 132.

[12] Subhash K. Shinde, Uday V. Kulkarni, “Hybrid

Personalized Recommender System Using Fast K-medoids
Clustering Algorithm”, Journal of Advances in Information
Technology, Volume 2, Number 3, August 2011, Page(s):
152 – 158.

[13] J. Usha , Ajay Kumar and A.D. Shaligram, "Clustering
Approach for Congestion in Mobile Networks", IJCSNS
International Journal of Computer Science and Network
Security, Volume 10 Number 2, February 2010, Page(s)
113-118.

[14] Mary Inaba, Naoki Katoh, Hiroshi Imai, "Applications of
weighted Voronoi diagrams and randomization to
variance-based k-clustering", In proceedings of the 10th

annual Symposium on Computational Geometry, New
York, USA, 1994, ACM Digital Library, ISBN:0-89791-
648-4.

P. K. Guha Thakurta: He passed B.Tech and M.Tech in
computer science & engineering from Kalyani University and
Calcutta University in 2002, 2004 respectively. He is currently
working as an Assistant Professor of CSE dept. in National
Institute of Technology, Durgapur, India. His research area is
Mobile Computing.

Saikat Basu is a PhD student at the Computer Science
Department at Louisiana State University, USA. He received his
Btech degree in Computer Science from National Institute of
Technology Durgapur, India in 2011. His research interests lie
in the field of Mobile Computing, Security and Video
Surveillence.

Sayan Goswami is a junior associate at Sapient Global Markets.
He received his Btech degree in Computer Science from
National Institute of Technology Durgapur, India in 2011. His
research interests lie in the field of Mobile Computing and
Embedded Systems.

Subhansu Bandyopadhyay is an eminent professor in the dept.
of Computer Science & Engineering, University of Calcutta.

190 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 3, NO. 3, AUGUST 2012

© 2012 ACADEMY PUBLISHER

	JAIT11061902 ed

