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Abstract— In this paper, we have used the parametric form 
of fuzzy number and convert a fuzzy Volterra integral 
equation to a system of integral equations in crisp case. We 
present a numerical method for solving fuzzy Volterra 
integral equations of the second kind. The proposed method 
is based on approximating unknown function with 
Bernstein’s approximation. This method using simple 
computation with quite acceptable approximate solution. 
However, accuracy and efficiency are dependent on the size 
of the set of Bernstein polynomials. Furthermore we get an 
estimation of error bound for this method. 
 
Index Terms— Fuzzy integral equations, System of Volterra 
integral equation, Bernstein polynomial  

I.  INTRODUCTION 

The solutions of integral equations have a major role in 
the field of science and engineering. A physical even can 
be modelled by the differential equation, an integral 
equation. Since few of these equations cannot be solved 
explicitly, it is often necessary to resort to numerical 
techniques which are appropriate combinations of 
numerical integration and interpolation [1, 2]. There are 
several numerical methods for solving linear Volterra 
integral equation [3]. Kauthen in [4] used a collocation 
method to solve the Volterra- Fredholm integral equation 
numerically. Maleknejad and et al. in [5] obtained a 
numerical solution of Volterra integral equations by using 
Bernstein Polynomials. 

The concept of fuzzy numbers and fuzzy arithmetic 
operations were first introduced by Zadeh [6], Dubois and 
Prade [7]. We refer the reader to [8] for more information 
on fuzzy numbers and fuzzy arithmetic. The topics of 
fuzzy integral equations (FIE) which growing interest for 
some time, in particular in relation to fuzzy control, have 
been rapidly developed in recent years. The fuzzy 
mapping function was introduced by Chang and Zadeh 
[9]. Later, Dubois and Prade [10] presented an 
elementary fuzzy calculus based on the extension 
principle also the concept of integration of fuzzy 
functions was first introduced by Dubois and Prade [10]. 
Babolian et al., Abbasbandy et al. in [11, 12] obtained a 
numerical solution of linear Fredholm fuzzy integral 

equations of the second kind. Also, the fuzzy integral 
equations have been studied by several authors [13, 14, 
15]. 

In this paper, we present a novel and very simple 
numerical method based upon Bernstein’s approximation 
for solving Volterra fuzzy integral equations. 

II.  PRELIMINARIES  

In this section the basic notations used in fuzzy 
calculus and Bernstein polynomials are introduced. We 
start by defining the fuzzy number.  

 
Definition 1. [16] A fuzzy number is a fuzzy set 

[0,1]=: 1 Iu →R  such that 
i. u  is upper semi-continuous; 
ii. 0=)(xu  outside some interval ],[ da ; 
iii. There are real numbers b  and c , ,dcba ≤≤≤  

for which 
   1. )(xu  is monotonically increasing on ],[ ba , 
   2. )(xu  is monotonically decreasing on ],[ dc , 
   3. cxbxu ≤≤1,=)( . 
The set of all the fuzzy numbers (as given in definition 

1) is denoted by 1E . 
An alternative definition which yields the same 1E  is 

given by Kaleva [17, 18].  
 
Definition 2. A fuzzy number u  is a pair ),( uu  of 

functions )(ru  and )(ru , 10 ≤≤ r , which satisfy the 
following requirements: 

i. )(ru  is a bounded monotonically increasing, left 
continuous function on (0,1]  and right continuous at 0 ; 

ii. )(ru  is a bounded monotonically decreasing, left 
continuous function on (0,1]  and right continuous at 0 ; 

iii. 1),0()( ≤≤≤ rruru . 
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A crisp number r  is simply represented by 
1.,0=)(=)( ≤≤ααα ruu  The set of all the fuzzy 

numbers is denoted by 1E . 
For arbitrary ))(),((=)),(),((= rvrvvruruu  and 

R∈k  we define addition and multiplication by k  as  
 

0.<),(=)(),(=)(
0,),(=)(),(=)(

)),()((=)()(
)),()((=)()(

kifrukrkurukrku
kifrukrkurukrku

rvrurvu
rvrurvu

≥
++
++

  

Remark 1. [12] Let 1)),0(),((= ≤≤ rruruu  be a 
fuzzy number, we take  

  

,
2

)()(=)( rururuc +
 

.
2

)()(=)( rururud −
 

It is clear that 0,)( ≥rud )()(=)( rururu dc −  and 

),()(=)( rururu dc +  also a fuzzy number 1Eu∈  is 

said symmetric if )(ruc  is independent of r  for all 
1.0 ≤≤ r  

Remark 2. Let  )),(),((= ruruu  ))(),((= rvrvv  
and also sk ,  are arbitrary real numbers. If 

svkuw +=  then  

).(||)(|=|)(
),()(=)(

rvsrukrw
rsvrkurw

ddd

ccc

+
+

 
 

 
Definition 3. [19] For arbitrary fuzzy numbers ,,vu  we 
use the distance  

|})()(||,)()({|=),( 10 rvrurvrumaxsupvuD r −−≤≤  

and it is shown that ),( 1 DE  is a complete metric space 
[20]. 

The Bernstein’s approximation, )( fBn  to a 

real function R→[0,1]:f  is the polynomial  

),()(=))(( ,
0=

xP
n
ifxfB in

n

i
n ∑  (1)  (1) 

 where  

0,1,...,=,)(1=)(, ixx
i
n

xP ini
in

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

 
 

There are 1+n n th-degree polynomials. For 
convenience, we set 0,=)(, xP in  if 0<i  or .> ni  It 
can be readily shown that each of the Bernstein 
polynomials is positive.  

Theorem 1. For all functions f  in [0,1]C , the 

sequence 1,2,3,...=);( nfBn  converges uniformly to 

f , where nB  is defined by Eq. (1). 
Proof. See [21].   
This theorem follows that, for any [0,1]Cf ∈  and 

for any 0>ε , there exists n  such that the inequality 
,<)( εffB

n
−  holds. 

We suppose .  be the max norm on [0,1] , then the 
error bound  

,)(1
2
1|)())((| //fxx
n

xfxfBn −≤−  (2) 

 
 given in [22], shows that the rate of convergence is at 

least 
n
1

 for [0,1]Cf ∈ . On the other hand, the 

asymptotic formula  

),()(1
2
1=))())((( xfxxxfxfBnlim nn ′′−−∞→  (3) 

 
 due to Voronovskaya [23] shows that for (0,1)∈x  

with 0,≠′f  the rate of convergence is precisely .1
n

 

III. FUZZY VOLTERRA INTEGRAL EQUATION 

The Fuzzy Volterra integral equations of the second 
kind (FVIE-2) is [24] 

1.0,)(),()(=)(
0

≤≤+ ∫ xdttFtxkxGxF
x

λ      (4) 

 where ),(0,> txkλ  is a kernel function and )(xG  is 
a fuzzy function. If )(xG  is a fuzzy function these 
equation may only possess fuzzy solution. Sufficient 
conditions for the existence of a unique solution to the 
fuzzy Volterra integral equation are given in [24]. 

Now, we introduce parametric form of a FVIE-2 with 
respect to Definition 2. Let ));(),;(( rxGrxG  and 

10)),;(),;(( ≤≤ rrxFrxF  are parametric form of 
)(xG  and )(xF , respectively then, parametric form of 

FVIE-2 is as follows: 

,10,);(),();(=);(
0

≤≤+ ∫ xdtrtFtxkrxGrxF
x

λ    (5) 

.);(),();(=);(
0

dtrtFtxkrxGrxF
x

∫+ λ   (6) 

Suppose ),( txk  be continuous and for fix t , ),( txk  

changes its sign in finite points as jx  where 

].[0, xx j ∈  For example, let ),( txk  be nonnegative 

over ][0, 1x  and negative over ],[ 1 xx , therefore from 
Eqs. (5) and (6), we have  
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dtrtFtxkrxGrxF
x

);(),();(=);( 1

0∫+ λ

1,01,,0);(),(
1

≤≤≤≤+ ∫ rxdtrtFtxk
x

x
λ  

 

dtrtFtxkrxGrxF
x

);(),();(=);( 1

0∫+ λ   

1.01,,0);(),(
1

≤≤≤≤+ ∫ rxdtrtFtxk
x

x
λ  

 By referring to Remark 2 we have  
  (7) 

)7(
1,0

,);(),();(=);(
0

≤≤

+ ∫
x

dtrtFtxkrxGrxF cxcc λ

)8(.10,);(|),(|);(=);(
0

≤≤+ ∫ xdtrtFtxkrxGrxF dxdd λ

  (8) 
 It is clear that we must solve two crisp Volterra integral 
equation of the second kind provided that each of Eqs. (7) 
and (8) have solution. 

 
We consider the Volterra integral equations of the 

second kind given by,  
  

,);(),();(=);(
0

dtrtFtxkrxGrxF cxcc ∫+ λ  

,10

,);(|),(|);(=);(
0

≤≤

+ ∫
x

dtrtFtxkrxGrxF dxdd λ  

 where );( rxF c  and );( rxF d  are the unknown crisp 
function to be determined, ),( txk  is a continuous 

function on the square 2[0,1]  and integrable function, 

);( rxGc  and );( rxGd  being the known crisp 
functions. 

To determine an approximate the unknown 
function of Eq. (4), we approximate with Bernstein’s 
approximation  

)9(,))((),()(=))((
0

dttFBtxkxGxFB n

x

n ∫+ λ
  (9) 
 therefore, we approximate the unknown functions 

);( rxF c  and );( rxF d  by  

)10(),();(=));(( ,
0=

xPr
n
iFrxFB in

c
n

i

c
n ∑   (10) 

 and  

)11(),();(=));(( ,
0=

xPr
n
iFrxFB in

d
n

i

d
n ∑   (11) 

 where  

0,1,...,=,)(1=)(, ixx
i
n

xP ini
in

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
  

Let )));((,));((( rxFBrxFB nn , 10 ≤≤ r  is a 

parametric form of ))(( xFBn , then we have:  

1,0),();(=));(( ,
0=

≤≤∑ rxPr
n
iFrxFB in

n

i
n

10),();(=));(( ,
0=

≤≤∑ rxPr
n
iFrxFB in

n

i
n   

By referring to Remark 2, we have the following 
equations  

 

)12(1,0
),;(=)))(1),(

)(1()(;(

0

0=

≤≤
−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−

∫

∑

r
rxGdttttxk

xx
i
n

r
n
iF

cinix

inic
n

i

λ

)13(,)(1|),(|

)(1(();(

0

0=

dtttxk

xx
i
n

r
n
iF

inix

inid
n

i

−

−

−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∫

∑

λ

 

In order to find );( r
n
iF c  and );( r

n
iF d  for 

ni 0,1,...,= , we now put njxx j 0,1,...,=,=  in (12) 

and (13), ,
jx s being chosen as suitable distinct points in 

](0, , and 0x  is taken near 0  such that 

1.=<...<<<0 10 nxxx  Putting jxx =  we obtain 
in short form two linear systems  

,= 111 YXA   (14) 
 where  

  

in
j

i
j xx

i
n

A −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(1([=1

 

,0,1,...,=,

)],)(1),(
0

nji

dttttxk ini
j

jx −−− ∫λ
  

,0,1,...,=1,0,)];([=1 nirr
n
iFX tc ≤≤  

 
,0,1,...,=1,0,)];([=1 njrrxGY t

j
c ≤≤

  
 and also  

,= 222 YXA   (15) 
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 where  
  

,0,1,...,=,

)],)(1|),(|)(1([=
02

nji

dttttxkxx
i
n

A ini
j

jxin
j

i
j

−− −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫λ  

  

,0,1,...,=1,0,)];([=1 nirr
n
iFX td ≤≤

.0,1,...,=1,0,)];([=1 njrrxGY t
j

d ≤≤   
 In general we cannot be able to carry out analytically the 
integrations, involved. We compute the integral that exist 
in sA ,

1  formula and sA ,
2  formula numerically. Now we 

can show );( r
n
iF c  and );( r

n
iF d  by 

nir
n
iF c

n 0,1,...,=),;(  and ,0,1,...,=),;( nir
n
iF d

n  

respectively that are our solutions in nodes 
njx j 0,1,...,=,  and by substituting them in Eqs. (10) 

and (11) we can find ));(( rxFB j
c

nn  and 

njrxFB j
d

nn 0,1,...,=));((  that are solution for 
integral equations (7) and (8). 

We give error bound for this solution in the following 
theorem.  

 
Theorem 2. Consider the crisp Volterra integral 

equations of the second kind (7) and (8). Assume that 
),( txk  is continuous on the square 2[0,1]  and the 

solution of the equations belong to )([0,1])( 2LC ∩α  

for some 2>α . If 1A  and 2A  invertible then 

)],)()()((1
8
1

))()()((1
8
1[

)))((),((

1
2

1
1[0,1]

[0,1]

rFrFAs
n

rFrFAAs
n

sup

xFBxFDsup

d
n

d

c
n

c
r

inniix

′′+′′+

+′′+′′+

≤

−

−
∈

∈

 

 where )(,0,1,...,=,= xFni
n
ixi  is exact solution of 

FVIE-2 and |),(|= [0,1], txksups tx λ∈ . 
 

Proof. We have  
   

|=));(();(| ††
[0,1] rxFBrxFsup inniix −∈  

−+−∈ );();();(| †††
[0,1] rxFrxFrxFsup ininiix  

≤|));(( † rxFB inn  

[0,1]
††

[0,1] |);();(| ∈∈ +−
ixiniix suprxFrxFsup  

 

|,));(();(| †† rxFBrxF innin −  

where †  means we have this equation for c  and d  
together, independently. From relation (2) we have the 
following bound 

(17),
8
1)(1

2
1

|));(();(|

††

††
[0,1]

nn

nnnx

F
n

Fxx
n

rxFBrxFsup

≤−

≤−∈
 

                                                  
 then it is enough to find a bound for 

|);();(| ††
[0,1] rxFrxFsup iniix −∈ . For numerically 

solving integral equations (7) and (8) by using 
Bernstein’s approximation, because from Theorem 1 we 
know that for any [0,1]† CF ∈  and for any 0>ε , 
there exists n  such that the inequality 

,<)( †† εFFBn −  holds so we can write integral 
equations (7) and (8) as  

,));((),());((=);(
0

dtrtFBtxkrxFBrxG c
n

xc
n

c ∫− λ
 and  

.));((|),(|));((=);(
0

dtrtFBtxkrxFBrxG d
n

xd
n

d ∫− λ  

 If we substitute );(† rxFn  instead of );(† rxF  in above 
equation then the right-hand side of integral equation is 
exchanged by a new function that we denote it by 

);(ˆ † rxG . So we have,  

,));((),());((=);(ˆ
0

dtrtFBtxkrxFBrxG c
nn

xc
nn

c ∫− λ  

and  

,));((|),(|));((=);(ˆ
0

dtrtFBtxkrxFBrxG d
nn

xd
nn

d ∫− λ  

Consequently we have  

)18(,0,1,...,=
|,);(ˆ);(|

|);();(| 1
1[0,1]

ni
rxGrxGmax

ArxFrxFsup

i
c

i
c

i
c

ni
c

ix

−

≤− −
∈

 

,0,1,...,=
|,);(ˆ);(|

|);();(| 1
1[0,1]

ni
rxGrxGmax

ArxFrxFsup

i
c

i
c

i
c

ni
c

ix

−

≤− −
∈

 

 
 and  

,0,1,...,=
|,);(ˆ);(|

|);();(| 1
2[0,1]

ni
rxGrxGmax

ArxFrxFsup

i
d

i
d

i
d

ni
d

ix

−

≤− −
∈

 
                                                                   (19) 
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 where .0,1,...,=,= ni
n
ixi  For finding a bound for 

|,);(ˆ);(| †† rxGrxGmax ii −   
  

we let  

,));(),());(=);(
0

dtrtFtxkrxFrxG cxcc ∫−λ  

  

,));(|),(|));(=);(
0

dtrtFtxkrxFrxG dxdd ∫−λ  

  
and  

,));((),());((=);(ˆ
0

dtrtFBtxkrxFBrxG c
n

xc
n

c ∫−λ

.));((|),(|));((=);(ˆ
0

dtrtFBtxkrxFBrxG d
n

xd
n

d ∫−λ  

  
 

  
So that  

,)));(();()(,(
));(();(=);(ˆ);(

0
dtrtFBrtFtxk
rxFBrxFrxGrxG

c
n

cx

c
n

ccc

−

−−−

∫λ
 

  
 and  

,)));(();((|),(|
));(();(=);(ˆ);(

0
dtrtFBrtFtxk
rxFBrxFrxGrxG

d
n

dx

d
n

ddd

−

−−−

∫λ
 

  
 if we let stxksup tx |=),(|[0,1], λ∈ , then we have 

,)(1
8
1

)(1
2
1)(1

2
1

|)));(();()(,(|
|));(();(|

|)));((

);()(,(|
|));(();(|

|)));(();()(,(
));((

);(||=);(ˆ);(|

0

0

cc

c

c
n

c

c
n

c

c
n

cx

c
n

c

c
n

cx

c
n

ccc

Fs
n

F

tt
n

sFxx
n

rtFBrtFtxksup
rxFBrxFsup

dtrtFB

rtFtxksup
rxFBrxFsup

dtrtFBrtFtxk
rxFB

rxFsuprxGrxGsup

′′+≤′′

−+′′−

≤−
+−

≤

−

+−

≤−

−−

−

∫

∫

PP

λ

λ

λ

  

  
 and  

,)(1
8
1|);(ˆ);(| PP ddd Fs
n

rxGrxGsup ′′+≤−   

 so by substituting this bound in the inequality (18) and 
(19) we have,  

,)(1
8
1

|);();(|

1
1

[0,1]

FAs
n

rxFrxFsup i
c

ni
c

ix

′′+

≤−

−

∈

(20) 

 
then from relations (16), (17),(20) and (21) we have 

),)((1
8
1

|));(();(|

1
1

[0,1]

c
n

c

i
c

nni
c

ix

FFAs
n

rxFBrxFsup

′′+′′+

≤−

−

∈

 (22) 

 
 and  

,)(1
8
1

|);();(|

1
2

[0,1]

d

i
d

ni
d

ix

FAs
n

rxFrxFsup

′′+

≤−

−

∈

),)((1
8
1

|));(();(|

1
2

[0,1]

d
n

d

i
d

nni
d

ix

FFAs
n

rxFBrxFsup

′′+′′+

≤−

−

∈

(23) 

 
 therefore by (22), (23) and Remark 1 we have 

),)((1
8
1)

)((1
8
1

|));(();(|

1
2

1
1

[0,1]

d
n

dc
n

c

inniix

FFAs
n

F

FAs
n

rxFBrxFsup

′′+′′++′′

+′′+

≤−

−

−

∈

  
  

),)((1
8
1)

)((1
8
1

|));(();(|

1
2

1
1

[0,1]

d
n

dc
n

c

inniix

FFAs
n

F

FAs
n

rxFBrxFsup

′′+′′++′′

+′′+

≤−

−

−

∈

 
  

 hence for all [0,1]∈r  

),)((1
8
1

))((1
8
1

|]}));(();(|,

|));(();([|{

1
2

1
1

[0,1]

d
n

d

c
n

c

inni

inniix

FFAs
n

FFAs
n

rxFBrxF

rxFBrxFsupmax

′′+′′++

′′+′′+≤

−

−

−

−

∈

 

  
 and then  
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 and the proof is completed.    

 
Theorem 3. (Minc [25]) The inverse of a nonnegative 

matrix 2A  is nonnegative if and only if 2A  is a 
generalized permutation matrix. 

)],)()()((1
8
1

))(

)()((1
8
1[

)))((),((

1
2

1
1[0,1]

[0,1]

rFrFAs
n

rF

rFAs
n

sup

xFBxFDsup

d
n

d

c
n

c
r

inniix

′′+′′+

+′′

+′′+

≤

−

−
∈

∈

 
 

Theorem 4. Let njxG j 0,1,...,=)),((  is a fuzzy 

arbitrary vector,  and 2A  is a generalized permutation 
matrix, then Eq. (9) has a fuzzy Bernstein approximation. 

 

Proof.By  we have 02 ≥A . By Theorem 3 and our 
hypotheses, proof is completed. 
 

A. Comparison with Other Methods 
      In this subsection, the shortcomings of the existing 
methods [5,12,26] for solving fuzzy integral equations are 
pointed out. 
      Maleknejad and et al. in [5] obtained a numerical 
solution of Volterra integral equations of the form 

10,)(),()(=)(
0

≤≤+ ∫ xdttFtxkxGxF
x

λ  

where ),(0,> txkλ and )(xG  are real function, by 
using Bernstein Polynomials. But in this paper we 
consider more general form of fuzzy Volterra integral 
equation (4) where ),(0,> txkλ  is a kernel function 
and )(xG  is a fuzzy function.  
 
     Abbasbandy and et al. in [12] considered linear 
Fredholm fuzzy integral equations of the second kind of 
the form 

10,)(),()(=)(
0

≤≤+ ∫ xdttFtxkxGxF
a

λ  

where ),(0,> txkλ  is a kernel function and )(xG  is a 
fuzzy function.  In this paper, if we consider ax = in 
equation (4) then this paper transfer to [12]. 
 

     Abbasbandy and et al. in [26] used the homotopy 
analysis method (HAM) to obtain solution of 
fuzzy integro-differential equation 

.10

,)()(),()()(
0

/

≤≤

=++ ∫
x

xGdttFtxkxFxF
x

λ
 

But, in this paper we used Bernstein Polynomials to 
obtain solution of equation (4).   

IV. NUMERICAL EXAMPLES  

To illustrate the technique proposed in this paper, 
consider the following examples.  

 
Example 4.1. We consider the fuzzy Volterra integral 

equation of the second kind given by,  

1,0,)()(=)(
0

≤≤+ ∫ xdttFxGxF
x

λ  

where 1=λ  

1.0),,2(=));(,);((=)( ≤≤− rrrrxGrxGxG  
The exact solution in this case is given by 

1.),0)(2,(=));(,);((=)( ≤≤− rerrerxFrxFxF xx  
We can see that 

1.0,1=);(1,=);( ≤≤− rrrxGrxG dc   

 
According to Eqs. (7) and (8) we have the following two 
crisp Volterra integral equations  

1,01,0,);(1=);(
0

≤≤≤≤+ ∫ rxdtrtFrxF cxc

1.01,0,);(1=);(
0

≤≤≤≤+− ∫ rxdtrtFrrxF dxd

 Now we approximate the unknown functions );( rxF c  

and );( rxF d  by ));(( rxFB c
n  and ));(( rxFB d

n  

for 1,2,3=n . 

We choose 10
0 10= −x  and 

n
jx j =  for 

1,2,3.=,1,...,= nnj  For this example, we use 

TABLE I.   
COMPUTED ERROR FOR EXAMPLES 

n       Example 5.1       Example 5.2   

  0.3513   0.5624 

  0.0059   0.0015 

  0.2844E-3   0.5848E-3 

 

,0,1,...,=,,)(1|),(|)(1
0

njidttttxkxx ini
j

jxin
j

i
j

−− −≥− ∫λ

,0,1,...,=,,)(1|),(|)(1
0

njidttttxkxx ini
j

jxin
j

i
j

−− −≥− ∫λ
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,1,0,0.1,= …r  where we calculate the error of the 
exact solution and obtained solution of fuzzy Volterra 
integral equation with Bernstein approximation. Table 1 
show the convergence behavior for 1,2,3=n . The exact 
and obtained solution of fuzzy Volterra integral equation 

in this example at 0.5=x  for 1,2,3=n , are shown in 
Figure 1. 

Example 4.2. We consider the fuzzy Volterra integral 
equation of the second kind given by, 

10,)(),()(=)(
0

≤≤+ ∫ xdttFtxkxGxF
x

λ

where 1=λ  , sinhxtxk =),(  and 

1.)),0)(41(
),)(1((

=));(,);((=)(

32

22

≤≤−−−+

+−+

rrrxcoshcoshx
rrxcoshcoshx

rxGrxGxG

  

The exact solution in this case is given by 

1.)),0(4),((

=));(,);((=)(
32 ≤≤−−+ rrrcoshxrrcoshx

rxFrxFxF
  

We can see that  

,
2

))(41(=);(
322 rrxcoshcoshxrxGc −+−+

1.0

,
2

)2)(41(=);(
232

≤≤

−−−−+

r

rrrxcoshcoshxrxGd
 

  
 According to Eqs. (7) and (8) we have the following two 
crisp Volterra integral equations 

1,01,0
,);()(

2
))(41(=);(

0

322

≤≤≤≤

+
−+−+

∫
rx

dtrtFxsinh

rrxcoshcoshxrxF

cx

c

  

 

1.01,0
,);()(

2
)2)(41(=);(

0

232

≤≤≤≤
+

−−−−+

∫
rx

dtrtFxsinh

rrrxcoshcoshxrxF

dx

d

 
Now we approximate the unknown functions );( rxF c  

and );( rxF d  by ));(( rxFB c
n  and ));(( rxFB d

n  

for 1,2,3=n . 

We choose 10
0 10= −x  and 

n
jx j =  for 

1,2,3.=,1,...,= nnj  For this example, we use 
,1,0,0.1,= …r  where we calculate the error of the 

exact solution and obtained solution of fuzzy Volterra 
integral equation with Bernstein approximation. Table 1 
show the convergence behavior for 1,2,3=n . The exact 
and obtained solution of fuzzy Volterra integral equation 
in this example at 0.5=x  for 1,2,3=n , are shown in 
Figure 2. 

V. CONCLUSIONS 

 
  

 

Figure 1. Compares the exact solution and obtained solutions 
 

Figure 2. Compares the exact solution and obtained solutions 

154 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 3, AUGUST 2013

©2013 ACADEMY PUBLISHER



Here a very simple and straight method, based on 
approximation of the fuzzy unknown function of an fuzzy 
Volterra integral equation on the Bernstein polynomial 
basis is used. Our achieve results in this paper, show that 
Bernstein’s approximation method for solving fuzzy 
Volterra integral equations of second kind, is very 
effective and the answers are trusty and their accuracy are 
high and we can execute this method in a computer 
simply. 
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