

A Participation Paradox: Seeking the Missing
Link between Free/Open Source Software and

Participatory Design

Zegaye S. Wubishet
University of Oslo, Norway

Email: zegayeseifuw@yahoo.com

 Bendik Bygstad
Norwegian School of Information Technology, Norway

Email: bygben@nith.no

Prodromos Tsiavos
 London School of Economic, UK

Email: p.tsiavos@lse.ac.uk

Abstract—The success of Free Open Source Software (FOSS)
has resulted in thousands of robust and ubiquitous products
such as Linux, Firefox and Apache. However, the usability
of many other FOSS products is often poor, and the most
successful projects are the ones where the user and the
developer are one and the same. The lack of broader
participation is worrying, because it threatens the entire
production model of FOSS. In this paper we investigate the
reasons for this situation, drawing extensively from research
on participatory design and commons based peer
production (CBPP), and on a case study of three FOSS
projects. Potential lessons are also drawn from the CBPP
model in general, and the FOSS approach in particular, to
mitigate the challenges facing distributed participatory
design (DPD).

Index Terms— open source software, participatory design,
commons based peer production

I. INTRODUCTION

The success of Free Open Source Software (FOSS) has
resulted in thousands of robust and ubiquitous products
such as Linux, Firefox, and Apache. However, while
open source software has generally proven to be useful
and reliable, usability problems for non-expert users have
been consistently reported [2, 12]. The most successful
FOSS projects are the ones whose users are also
developers, but the non-technical user may feel that
FOSS software is developed by experts for experts.

Although user involvement has been emphasised as an
important element in FOSS development [40], low
participation of end users is salient; developers usually
rely on their own intuition to obtain requirements or learn
about users indirectly [25]; project leaders and core
members exert more influence [53]; and in most cases the
developers produce the systems for their own use without

considering the particular needs of the non-technical
users [29, 53].

It is reasonable to assume that such scarce participation
of end-users strongly affects the usability and success of
FOSS systems; the problem is believed to be one of the
key barriers to the diffusion of FOSS to desktops of
ordinary users [40]. There are, however, even deeper
practical and ideological concerns. If participation does
not become wider and more substantive, it may threaten
the entire production model of FOSS.

The consequences could be that (1) the economic
model behind FOSS collapses and its benefits are never
materialised, (2) the power relationships that underlie the
FOSS model collapse; instead of reversing power
structures and increasing the autonomy of the user and
developer it intensifies the existing power regime and (3)
in a wider perspective, this results in under-utilization of
the FOSS commons and the promised freedoms by the
movement, implying the traditional approach is sufficient
for end-users’ purposes.

Therefore, it seems paradoxical that the very same
possibilities of participation that FOSS culture and
practice provide impede the participation of lay users. In
addressing these issues, we ask the following questions:

• Why do FOSS systems suffer from scarce end-
user participation and therefore from poor
usability?

• What lessons can be taken from the
Participatory Design (PD) tradition to create a
better user experience?

• What can the FOSS model offer to PD?
In order to answer these questions, we will deepen our

investigation and ask whether features of the production
model behind FOSS are responsible and/or helpful for
this situation. We need to return to a FOSS abstraction,
such as the Commons Based Peer Production (CBPP)

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 181

© 2013 ACADEMY PUBLISHER
doi:10.4304/jait.4.4.181-193

model and interrogate some of its premises to ascertain
whether they invite or prohibit participation after a
certain point. Drawing on the CBPP model, this study
reveals how the tradition of PD could respond to these
practical and power concerns in FOSS. Potential lessons
from FOSS and CBPP are also linked to the PD tradition.

Even though user participation is a much studied
concept in the information systems literature, only a few
researchers have examined the problems related to the
participation of non-developer users in the FOSS
development context [29]. There has been a longstanding
but unmet need to extend the benefits of the PD approach
to the present reality of distributed production [26, 34,
41]. This study argues that the fundamentals of the CBPP
model [10] are the bridging links of both traditions,
empowering end users and maximising participation. We
believe that this way of re-thinking the issues will
contribute specifically to the FOSS literature and more
generally to the IS research field.

The next section reviews the research, exposing the
challenges and identifying possible contributions from
PD and CBPP. This is followed by a discussion on the
methods. In section 4 we analyse the relationships among
the three strands of research. In section 5 we empirically
discuss how PD and CBPP might strengthen the FOSS
community, and conclusions follow in section 6.

II. REVIEW OF RELATED LITERATURE

In this section we review the FOSS research, and relate
it to participatory design and CBPP research. This
comparative analysis identifies the challenges and
relationships of the three approaches. It also provides an
analytical lens through which we analyze the cases under
discussion.

A. FOSS
The essence of free and open source software is that

the source code is released along with the software to
anyone who chooses to use it. The code is open, public,
and non-proprietary [52]. Anyone in possession of the
software has the freedom to run it for any purpose, to
study how it works, adapt it to his/her own needs, to
redistribute copies to others, and to improve the program,
and share the improvements with the community [47].

The core institutional device ensuring these rights is
the licensing mechanism which inverts the idea of
exclusion as a basis of property rights; it offers every
individual the right to distribute, but not the right to
exclude [52]. The development usually takes place
asynchronically in a distributed manner [13]. In the open
source community it is strongly believed that if users are
properly cultivated, they can become co-developers.
Given a bit of encouragement, the users will diagnose
problems, suggest fixes, and improve the code far more
quickly [44].

The often-cited success examples of FOSS are the
Linux operating system, the Apache web server, the
Mozilla browser, the GNU C compiler, the Perl scripting
language, and MySQL database management system.
One of the key factors in the success of such systems is

that the development process thrives on increasing the
user and developer base [45]. In fact, most of these
systems are infrastructural, benefiting from a larger pool
of interested participants, and their requirements are part
of the general taken-for-granted wisdom of the software
development community [21].

 At the same time, many other FOSS projects fail to
attract developers and/or users and, as a result, never get
off the ground [43]. The majority of FOSS projects
located on popular hosting sites such as SourceForge only
have a few members [17, 57]. Although FOSS over the
last decade has moved from the hacker margins to the
mainstream [52], opinions differ about the true
participative nature of the process [54]. In practice, up to
90 per cent of the potential users might be 'passive users'
who merely use a system and take no part in its
development [40]. This process results in software
developed by experts for experts [54]. Such lack of
average user participation poses a serious challenge to the
usability of FOSS systems [39].

Implied causes of scarce involvement of non-technical
users in the literature include the following: users do not
have the technical vocabulary valued by developers so
that they will be rarely attended [40]; developers have a
limited understanding of usability and there is a lack of
resources and evaluation methods fitting into the FOSS
paradigm [2]; requirements are taken as generally
understood and not needing interaction among end-users
[21]; weak focus on integration of usability concepts and
approaches with software development methodolgies [14];
and some designers and developers have customarily
viewed software as a technological problem rather than as
a people problem [20, 25, 54].

The tools of participation, such as Concurrent
Versioning Systems, Mailing Lists or Electronic Fora
may add to the confusion among end-users who wish for
a simple yet powerful set of tools. Thus, non-expert users
could be intimidated by the ability required to fully
customise FOSS software or even perceive the possibility
of participating to the production of source code as a sign
of extra complexity and a source of confusion [21].

Power structure is also an issue in FOSS literature. The
open source software development process is not a free-
for-all where everyone has equal power and influence
[52]. The technically capable and active core team
members usually have more authority and decision
making rights [29]. The criticism and feedback from
developers is taken much more seriously than that of end-
users [35]. Even among the developers themselves, there
is politics in the management of conflict where there are
manipulations of power, interests, rules, behavioural
norms, decision-making procedures, and sanctioning
mechanisms [52].

B. Participatory Design (PD)
Participatory Design is a set of theories and practices

considering end-users as full participants in software and
hardware production activities [24, 46]. As a design
philosophy it recognises the critical importance of people
within information systems development [22] and views
organisational issues as central to system design [15].

182 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Originating in the Scandinavian workplace labour
movement [22], the goal of PD was to democratise work
environments and increase job satisfaction [19, 41]. Later
it developed to encompass issues of quality and better
acceptance of information systems [34]. It assumes users
to be experts in their work, and able to design and
develop the tools they use [5, 46]. The users’
involvement yields better requirements specifications,
and results in better system design and more usable
software [41]. PD focuses on the direct participation of
those who will be affected by the development of the
application in the decision-making, design and
development stages [50].

At the core of the democratic and participatory
objective is the concept of user/worker ‘empowerment’
[16, 41]. Such empowerment can be democratic, which
maintains that users have the right to participate in
decisions, or functional, by which users have the right to
be able to perform their job effectively and efficiently,
and their participation in the design process is needed in
order to achieve this [30].

A main principle in PD is a mutual learning process
between developers and users in an organisational
context [11]. PD stresses that developers need knowledge
of the actual use context and users need knowledge of
possible technological options [26, 46]. Its
epistemological stance is that such types of knowledge
are developed most effectively through active
cooperation [31], which is a core issue in FOSS projects.

Although PD is a well-known and quite commonly
used approach, no formalised guidelines applying it to
information systems development have as yet been
established [42]. Hence, techniques and methods and
their utilisation vary from project to project. However,
apart from the political and theoretical explorations of
participation, PD researchers have developed practices
that promote cooperation [31].

One popular technique in traditional PD is conducting
workshop sessions between users and developers. This
assists in information sharing; users learn design skills
and understand technological possibilities, and
developers understand the organisation and attitudes
towards work. Other techniques and tools focussing on
systems design are brainstorming, scenarios, mock-ups,
simulations of the relation between work and technology,
future workshops, design games, case-based prototyping,
and co-operative prototyping [31]. Surveys are also
used to evaluate usage in different contexts and by
different user groups [27].

Envisionment is also central to PD which is
experiencing the system functioning in the use situation.
With this technique, the user works under the conditions
that the proposed system will bring about; this therefore
requires more than reading a description of the proposed
system or watching a demonstration [15].

However, a fundamental limitation of PD techniques is
that they are primarily focused on project stakeholders
being collocated [27, 31], and on the development of a
single, contiguous, customised software system
representing and supporting workflows within one

organisation [41]. This is fiercely challenged in the face
of the growing trend towards distributed systems
development. New organisational structures such as
virtual networks are emerging, where formal
organisational structures are missing and boundaries
between stakeholders are becoming more fluid [41].
These contexts may set practical limits to the
applicability of traditional PD techniques.

Recently, a trend towards Distributed Participatory
Design (DPD) has emerged in the literature. DPD
recognises that many contemporary design teams often
comprise developers and users that are geographically
dispersed [34]. Obendorf et al [41] stressed that 'to cope
with other use contexts and new forms of work – such as
communities and virtual networks – the traditional
repertoire of PD methodology needs to be expanded to
deal with distribution and diversification of users'.

According to Gumm [26], the distribution could be in
terms of varying locations of people and resources
(physical), related to work structures (organisational), or
variations in working hours (temporal). The physical
distribution is the bigger challenge for PD and the main
area of potential conflict [26]. DPD intends to cope with
such settings where stakeholders are distributed across
time, space, and/or organisation [26, 41].Along the needs
of the distributed development trend, PD is understood to
include understanding, designing and evaluating activities
[28]. The aim of the activities is to improve the
functionality and/or usability of the solution. This can
also involve different kinds of intermediaries in the
process.

Still, a major challenge of DPD is that the concepts of
real participation and of physical distribution tend to be
in conflict as most PD approaches are based on the
possibility of face-to-face meetings [27, 34]. The
challenge emanates from the reasons that distributed
teams have multiple differences such as language,
experience, technical and domain knowledge, and time
zones [37].

In response to the challenges facing DPD, Obendorf et
al [41] introduced two techniques extending those known
in the traditional PD practice: inter-contextual user
workshops and commented-case-studies. Inter-contextual
user workshops bring users from different contexts and
developers together to reflect on the usage and design of
the software and its future development. Commented-
case-study makes the face-to-face interaction of the inter-
contextual workshop more persistent by providing a
written documentation of use experiences and design
decisions.

In contrast to more traditional PD workshops, inter-
contextual user workshops reflect and enhance use
practices within the current system design rather than
designing new or revised features. Unlike moderated
focus group mechanisms, these are meant to be oriented
more towards compromise, consensus and mutual
learning [41].

Loebbecke and Powell [34] argued that as PD tackles
the problems that arise in distributed projects, it is more
necessary to look outside its own domain for solutions.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 183

© 2013 ACADEMY PUBLISHER

They demonstrated how other collaborative research
methods, like action research and design science, may
offer useful experiences. Accordingly, this paper seeks
insights from the traditions of FOSS and CBPP to enrich
the PD approach, particularly as it applies to Information
Systems field. The next section introduces CBPP as a
potential linking phenomenon.

C. Commons Based Peer Production (CBPP)
CBPP is a new model of economic production where

the coordinating mechanism is neither market nor
managerial hierarchy, but a digitally networked
environment [9, 10]. Examples of cases that manifest this
model include content development (Wikipedia, NASA
Clickworkers experiment), relevance and accreditation
purposes (Amazon, Google, open directory project,
Slashdot, Kuro5hin), distributed services (Seti@home,
Gnutella, distributed proofreading), and free and open
source development (GNU/Linux, Apache web server
Mozilla and others) [10].

Benkler contends that autonomy, democracy, justice
and development can all be improved with peer
production, which implies a shift from consumers to
users, doing more for and by themselves, and in a loose
association with others [9].

The critical mass of participants in such peer
production projects do not generally participate, for
financial reasons. According to Benkler, this form of
production has two core characteristics. The first is
decentralisation where authority to act rests with
participants, rather than a central organiser or manager.
The other is that it uses social cues and motivations,
rather than prices or commands, to motivate and
coordinate the action of participating agents.

Benkler [8, 9, 10] proposes three characteristics of
successful peer production and participation:

• the project and artefact must be modular
• the modules should be predominately fine-

grained
• there should be low-cost integration mechanisms

These properties determine the number of participants,

the scope of varied investments (heterogeneity), the
minimal investment required to participate, and the
simplicity of integration. Benkler argued that a project
with these features can attract many users – both
technically good contributors and end-users. The
modularized approach also helps to reduce the learning
curve for newcomers [21]. Moreover, he stressed that not
every chunk needs to be fine grained.

In an ideal CBPP scenario the modules are granular
and heterogeneous, so that individuals with even minimal
skills and time could self-select themselves to participate
in such a project. However, recent studies indicate that in
the course of a project’s life-cycle the capacity to
participate required from the peers increases, so their
participation is constantly under pressure [10, 49, 51] .
We will return to this premise with reference to PD
approaches in the discussion section.

Another key element of Benkler’s CBPP model is that
of excess capacity, both at the level of the artefact and
that of the peer. Excess capacity at the level of the
artefact relates to the processing, storage and
communication technologies which are ubiquitously
available [10]. On closer inspection, however, it also
relates to the non-rivalerous nature of the artefact that is
to be produced; the use of the produced artefact by one
user should not hinder the enjoyment of another. This
feature of the produced artefact allows maximum
dissemination and parallel production and hence
contributes to the increasing of the user participation.
However, it needs to be complemented by 'peer excess
capacity' [51], by which whoever participates in the
development needs to have the skills and the time to do
so, and these skills and time need to persist over time.

Peer-production processes generally also require some
substantive cooperation among users, including, in FOSS
development, spotting a bug, proposing a fix, reviewing
the proposed fix, and integrating it into the software are
interdependent acts that require cooperation. This is
accomplished by a combination of measures such as
technical architecture, social norms, legal rules, and a
technically backed hierarchy that is validated by social
norms [51]. Such structural, philosophical and moral
opportunity prevalent in FOSS projects, is attracting adn
resulting a shift of thinking in commercial companies as
well [1].

According to Benkler, in the traditional mass-media
model ownership of the means of communication
provides an owner the power to select what others view,
and thereby enables it to affect their perceptions of what
they can and cannot do. The networked information
economy, however, provides varied alternative platforms
for communication (like mailing lists and dynamic pages)
that can moderate this inordinate power. Benkler explains
that the Free Software model in particular has shown us
that successful peer-production projects can be
technically and culturally structured in ways that make it
possible for many individuals to contribute vastly at
levels of effort that are commensurate with their ability,
motivation, and availability.

III..ANALYSIS

This section gives a theoretical and comparative
analysis of how the FOSS, PD and CBPP models are
related in view of addressing the posed problems. The
section starts with a summary table (Table 1) from the
discussion so far, highlighting the core attributes of the
three approaches.

A. Participation in FOSS and PD/DPD
According to the critical review in Section 3, it is

shown that widening the participation and building a
community of users is both a success factor and an
ideological issue in FOSS development. Here we contend
that many of the acceptability and usability problems that
plague traditionally engineered systems in general, and a
large number of FOSS projects in particular, can be
mitigated by adopting the PD techniques.The practices

184 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE 1.
SUMMARIZING THE ATTRIBUTES OF FOSS, PD AND CBPP

 Free and Open Source Software Participatory
Design

Commons Based Peer Production

Focus Open and participatory
development; freedom to study,
use, improve and redistribute
software

Workplace improvement, user
empowerment: both democratic and
functional

Social production: decentralised and
based on social cues rather than
managerial commands or market-based
prices

Relationship to users Users are developers and
developers are users

Developers and users should learn
from each other

Users contribute directly to production
through an open IT architecture;
exploiting excess capacity

Key
Principles

Peer-to-peer development User-developer co-operation:
• Workshops
• Brainstorming
• Prototyping

IT architecture:
• Modularity
• Granularity
• Low-cost integration

there can also engender a sense of ownership, giving
users a vested interest in the success of the system.

Counting on its root, an important goal of PD is to
empower users (as a democratic right) so that they will
actively take part in decisions; and also enable them
develop their skill and knowledge so that they can
creatively contribute to the production of a useful and
usable solution. The FOSS approach, unlike its closed
source counterpart, is more conducive to achieve this
objective. In practice, however, power asymmetry is a
salient challenge in many FOSS projects, including the
successful ones.

PD emphasises the need for software tools to be
designed in the context in which they will eventually be
deployed [16]. Environments that favour empowerment
of users, such as decentralisation of decision-making,
open communication, flat organisational structure and
progressive leadership are more conducive to apply the
PD practices and to exploit its potential [15]. The FOSS
literature indicates that such is the organisational nature
of many open source projects.

As described in the review section, the FOSS
community appears to be technically and theoretically
open and invites broad participation, but it is closed for
users with limited technical skills. When participating
in the development of a piece of software, the peer has to
know the programming language, be familiar with the
architecture and structure, and capable of participating in
the discussions on relevant communication platform.

As the discussions proceed and the project matures, the
costs of participation increase. This development has
profound implications for the actual openness of a project.
That is why we argue that a FOSS project may be legally
or technically open, but if it does not provide a set of
mechanisms to reduce participation costs, the result is a
de facto closed development structure. Moving to an
increasingly elitist mode of production will invite only
participants who have been following the project long
enough to know its intricacies and to have the skills to
make a meaningful contribution.

We suggest that PD/DPD can improve the usability
and participation problems with in FOSS projects at two
levels: during the development of the system, and then
during adoption and customization.
During development of the system

The openness of FOSSs enables users to contribute and
take part in development, from initiation to final testing
and sustainability. Users in traditional design models take
part in the design process as informants in the functional
analysis phase, or as evaluators in the prototype and
simulation phases. However in FOSS development users
can be involved in all the phases of the design process [6].
Likewise, PD emphasises the involvement of users at
each stage and take place during the whole of the project
life cycle [36], which is in line with the organisational
nature of FOSS projects.

Participatory Design methods consider users as the
domain experts—the ones with the most knowledge
about what they do and what they need—and the
designers as the technical experts [38]. The fact that users
are experts in their field is best utilised if users are able to
share their ideas in participative situations. Through
participatory design, users are more able to determine
their own requirements and map them onto solutions.
Developers can then be released from the painstaking
task of traditional requirements analysis to concentrate on
building systems that will be readily accepted and far
easier to maintain [15].

The FOSS development relies on tools and artefacts
for cooperation such as mailing lists, discussion forums,
and bug-reporting tools [21]. Through an empirical
investigation of two open source projects, Iivari [28]
indicated that such tools have been successfully used for
distributed PD in the FOSS development context in
which non-developer users also took part in online
discussions concerning understanding, designing and
evaluating activities. In so doing, end users play
informative, participative or consultative roles.

In FOSS development there is a need to focus on the
evolution of software in the presence of a large and active
community of users and co-developers [44]. Similarly, an
open-ended development perspective is an important
feature of PD; it does not attempt to deliver a completed
system, instead development is deemed to be open-ended
with changing requirements [15].

The underlying reason for employing participatory
design is to construct better system designs that take into
account the views, requirements, and work of real users
[16]. The more pragmatic view of PD also assumes that
greater user input and involvement lead to more
widespread system acceptance. PD approaches help to
meet the of handling software development tasks, as
most of the PD techniques focus on issues like vision

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 185

© 2013 ACADEMY PUBLISHER

development, requirements elicitation, and requirements
negotiation [26]. These obviously require the direct
participation of end users. Proper requirements
management is in turn critical to usability issues.

In one of the FOSS cases she studied, Iivari [28]
discovered a discussion forum dedicated to usability
issues in which different kinds of features are requested,
from issues of appearance (how it ought to look) to
behaviour (how it ought to behave) and integration (with
what it ought to operate). On the one hand, certain
appearance or behaviour customisations were also
requested. On the other hand, different kinds of problems
were expressed; for example, the sender did not know
how to use, or does not like, a particular feature of the
OSS, or the OSS altogether.

These messages are rampant in many FOSS projects in
the form of feature requesting and bug reporting.
However, they are useful ways of addressing usability
issues from end users as they allow the gathering of
information that can potentially improve functionality or
usability.

A case study on the Python project [6] highlighted
instances of PD practice, which was referred as pushed-
by-user proposal. That happens in a distributed manner in
the discussion spaces (in the python-list for users and the
python-dev mailing-lists) and in the physical interactions
spaces, with a specialisation of design topics in these
spaces.

The ‘Internet Course Reader’ is another FOSS project
which demonstrates the application of PD. It is an
educational computer conferencing open source program
used for conducting courses via the Internet and it is
produced using participatory design principles. To design
the program, participants identified their educational
computer communications needs. The rest of the
project entailed the writing of initial program
specifications which were approved by alumni of the
residential courses around the world. Meetings with the
development team mainly occurred via computer
conferencing as well as the creation and presentation of
prototypes, follow-up sessions with course participants,
field-testing, and the involvement of end users [7].
During adoption and customization

FOSS development obviously poses additional
challenges to the application of the traditional PD
techniques as it happens in a distributed manner.
However, many of the PD techniques can be applied
during adoption and customization because a functional
system is at hand for end-users to work around from the
beginning.

PD reduces the scope and intensity of post
implementation training requirements. Selection of
competitive software could also be easily done together
with the actual end-user themselves, through PD
workshops. FOSS systems could be modified and adapted
to particular organisational settings together with the PD
techniques.

The traditional PD approach has been challenged by
physical and organisational distributions. The concept of
real participation does not work well with physical

distribution because most of the PD techniques are based
on the possibility of having face-to-face meetings. PD
approaches also fail to address the limitation caused by
organisational distribution within the user group or
between different user groups.

In contrast to more traditional PD workshops, inter-
contextual user workshops [41] related to DPD focus
more on reflecting and enhancing use practices within the
current system design than on designing new or revised
features. This approach, though, is already in practice in
many successful FOSS projects.

B. The CBPP model vs. FOSS
In most cases, the FOSS approach is an example of

CBPP, but limited to a sub-community of developers,
with relatively high entry barriers for average users. We
believe that the principles of CBPP can lower these
barriers.

First, for mass participation to occur, the modularity
and granularity of the artefact is imperative. If relatively
large-grained contributions are required, the number of
contributors is limited and the process is slowed. If
modules are independent, each contributor can
independently choose what and when to contribute. This
maximises their autonomy and flexibility to define the
nature, extent, and timing of their participation in the
project.

The CBPP model tells us that the size of the modules
(granularity) determines the time and effort that an
individual must invest in producing them. The granularity
of the modules therefore sets the smallest possible
individual investment necessary to participate in a project.
If this investment is sufficiently low, then 'incentives' for
producing that component of a modular project can be
trivial.

A good example of granularity pertains to the Slashdot
technology website, where users voluntarily submit and
evaluate the issues. Only a few minutes are required for
moderating a comment or meta-moderating a moderator.
Benkler [10] argues that this is more fine-grained than the
hours necessary to participate in writing a bug fix in an
open-source project. More people can participate in the
former than in the latter, independent of the differences in
the knowledge required for participation. His formulation
is that the number of people who can participate in a
project is inversely related to the size of the smallest scale
contribution necessary to produce a usable module.

The cost of integration is also another determining
factor; participation requires available and easy to use
tools. Another interesting note of the model is that the
required time for participation can be drawn from the
excess time people normally dedicate to having fun and
participating in social interactions. If the grain of
contribution is relatively large and would require a large
investment of time and effort, the universe of potential
contributors decreases.

Raymond [44] noted that for seeing usability bugs, the
traditional open source community may comprise the
wrong kind of eyeballs. However it may be that by
encouraging greater involvement of usability experts and
end-users it is the case that given enough user experience

186 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

reports, all usability issues are shallow. By engaging
typical users in the development process, OSS projects
can create a networked development community that can
do for usability what it has already done for functionality
and reliability.

Even though FOSS development strongly relies on
Internet tools for communication and cooperation, end
users may be unable to fix or report bugs, and
communicating with developers through mailing lists and
bug-reporting systems might be intimidating for non-
developer users [28, 40]. Especially, the reporting of
usability-related problems might be complex and difficult
to explain textually [4, 28, 56]. Herein lies the advantage
of the CBPP approach preaching modular, granular and
easy integration mechanisms.

The attributes of the CBPP model thus appear to be
suitable in facilitating the intended user engagement in
distributed software production. This model,
exemplifying the flagship FOSS systems, can also change
the balance of throughout the FOSS development
approach.

C. Lessons from CBPP/FOSS to the PD Tradition
Much like FOSS development, PD/DPD can be helped

by modularization by splitting functionality and
providing targeting perspectives to specific groups and
contexts.

A decade ago, three arenas of participation were being
discussed in the participatory systems design tradition:
the individual project arena (where specific systems are
designed and new organisational forms are created), the
company arena (where 'breakdowns' or violations of
agreements are diagnosed), and the national arena (where
the legal and political framework is negotiated which
defines the relations among the industrial partners and
sets norms for all work-related issues) [23, 31].

We believe that the peer production approach in
general and the FOSS model in particular links the three
arenas and even expand the scope to the international
level. The hierarchical mode of participation within the
three spheres can also be flattened. The decentralised
approach helped by the networked environment, therefore,
responds to prevailing concerns of losing sight of
participation at the latter two arenas [23, 24, 31].

In many PD projects it is not possible for all those
affected by the design effort to participate fully [31].
Carefully considering and negotiating the choice of
participants with management and workers themselves is
a huge task in itself. However, adapting design and
development issues to the peer production model could
alleviate the problem: interested individuals will come
forward, requirements for participation could be fine-
grained and the network platform allows off-the-job
and/or on-the-job participation at any time. This affects
the power relationship, which is a core issue in PD, as it
offers equal opportunity

IV. METHOD

The research approach was a three-year case study [55]
of three FOSS projects. The cases were selected on the

criteria that they were all FOSS initiatives, but offered
quite different solutions. The projects were:

• Varnish: An accelerator on web servers for
complex web sites or content management
systems

• Skolelinux: A community-managed FOSS
solution aimed at schools (a Custom Debian
Distribution)

• HISP: A globally distributed open source
software initiative, developing health
information systems

Data were collected through interviews, online
questionnaires and mailing lists. Interviews were
conducted with developers, service providers and users,
some of them several times. All the interviews conducted
were semi-structured, with guiding questions to facilitate
the discussions. Online questionnaires were sent to the
communities, focusing on motivation, participation and
contributions. Among others, the questions pertained to
the role of the respondent, the contributions made, the
reasons to participate, the challenges faced during
participation, availability of mechanisms to attract more
users and developers, how the respondent participated
in all stages of the development process, and how the
technology in use facilitated or constrained contributions.

In addition, the mailing list archives of the three
communities were accessed. Documentary sources of the
projects were also a useful resource.

Data analysis was conducted as follows. First, each
case was analysed chronologically and thematically.
Then the perspectives of PD and CBPP were drawn on to
enrich the analysis, and to assess alternative or
complementary strategies. Then the three cases were
compared, and the PD and CBPP perspectives were
revisited. This iterative process of sense making [32] was
repeated until a consistent analysis was reached. Finally,
it was assessed to which degree they were using elements
from these approaches, as documented in section 5.

V. THREE FOSS CASES

The three approaches discussed in section 3 share
useful values and principles. They all represent
commitment to an open culture that rejects traditional
bureaucratic management styles in favour of a more
dynamic and user-centred style with open
communications, opportunity for debate and a high
degree of personal responsibility and development. This
is a necessary foundation for integrating PD principles
into FOSS and vice versa, linking them by the key
elements of the CBPP production model.

We argue that the three traditions enrich each other. To
strengthen our argument we will describe three cases of
FOSS development that have used elements from PD and
CBPP. Conversely, when these elements are not
sufficiently used, we will use this to suggest
improvements.

A. Background to the Three Cases
Skolelinux : is a community-managed FOSS solution

for schools (a Custom Debian Distribution), as an

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 187

© 2013 ACADEMY PUBLISHER

alternative to Microsoft Windows. It was initiated in
2001 by a group of four programmers in Norway who
hoped to create a quality, full-fledged and free computer
solution for schools. There are now about 25 main
developers, with an active core of five. However, more
than 170 people to date have directly contributed and
committed something on the repository, excluding the
larger Debian community. The project in Norway has 15
translators.

General Public License (GPL) is the preferred
licensing tool and new contributions are encouraged to
comply with it but any license that conforms to the
Debian Free Software Guideline (DFSG) is acceptable.
DFSG espouses the same ideals as in Open Source
Definition (OSI) and Free Software Foundation. The
tools in use include SVN for archiving and mailing lists,
wiki sites for coordinating development efforts, and a bug
reporting tool (Bugzilla).

Skolelinux has branches in Belgium, Brazil, Denmark,
Germany, France, Latvia, Norway, Spain and Turkey. It
is used in more than 450 schools worldwide -- mostly in
Europe but also in Africa. There are between 200 and
30,000 users per school.

Varnish : is hybrid open source software released
under the revised BSD (Berkley Software Distribution)
license. The project is handled by a company called
Linpro in Norway, which mainly produces open source
software. Technically, the Varnish software is an HTTP
accelerator on web servers for complex web sites or
content management systems (CMS).

The project started in early 2006. The software is
written entirely in C programming language; Perl is used
in some places. All the accompanying tools in the project
are open source – Subversion, TRAC, Mailman and GNU
author tools.

Linpro makes money by offering add-on services to
customers and through sponsorships. The mailing list has
names and addresses from all over the world. The main
developer works from Denmark on a part-time basis. The
other main developer is a full time worker in Linpro,
Norway.

HISP : is a globally distributed open source software
development which was initiated in South Africa in 1994
and is based on collaboration among academic
institutions, health authorities, and private organisations.
The goal of the project is enabling south-south and south-
south-north collaboration.

The project develops District Health Information
System (DHIS), for collecting, processing, and analysing
health information for health administration purposes.
DHIS 2.0 is a web-based software package released
under the BSD license. It is developed using Java
frameworks (such as Spring, Hibernate and WebWork)
and supported by open source tools mailing lists, Wiki,
Subversion (code repository), JIRA (Issue tracker) and
IRC channel (for instant messaging).

DHIS 2.0 is developed in globally distributed manner
with developers currently in Norway, India, and Vietnam.
The software has been implemented in many developing

countries in Africa and Asia, such as India, Vietnam,
Tajikistan, Sierra Leone, Ethiopia, Tanzania and Zanzibar.

B. Participation Patterns and challenges in the projects
Analysis of the mailing lists of the three projects

reveals 82 participants in Varnish, 170 in Skolelinux and
74 in HISP. The development stage and history of the
three projects varies. In fact this determines the number
of participants that each project could have. In addition,
the size of the pool of participants depends on the type
and purpose of the software. The messages and threads
posted is a good indicator of how active a project is and if
participants are taking part in the process. Accordingly,
we considered the data of all the projects beginning from
their respective starting period. Table 2 summarizes the
statistical data about participation and participants in each
project.

This data shows the scarcity of participation, and
particularly of end-user participation. Skolelinux is said
to be used in over 450 schools worldwide. DHIS 2.0 is
claimed to be used in more than seven countries, some of
them with huge populations. Varnish, by its very nature,
is meant to be used by people running large content
management systems. This makes the user pool relatively
smaller. Its distribution and usage is worldwide, though.
According to the table, participation of end-users is still
at a minimum. This is indeed a cause for concern in light
of the promises offered by the FOSS phenomenon.

An informant from the Varnish project described the
difficulty of mastering the learning curve that software
development required:

As many open source projects, Varnish progress is
often slow because of lack of more developers’
participation. Perhaps this is also so because of the
steep learning curve to be passed before being able
to make any significant contribution to the actual
Varnish program. It takes a person with high
competence in the C programming language and a
lot of FreeBSD/Linux kernel knowledge, it seems.

TABLE 2.

OVERALL PICTURE OF PARTICIPATION IN THE THREE PROJECTS

In section 2.3, we claimed that projects that strictly

follow the CBPP model have fine grained modules which
allow participants to easily catch up with the
development process. It is argued that such an approach
reduces the time and effort required for new contributions.

When asked why the project could not attract more
contributors, a core developer of Varnish replied that:

It is certainly due to the nature of the market.
Varnish only really applies to large web servers so
there is no mass-market and there are not as much
‘see what I have on my computer’ geek-credits in
Varnish. Of course the rather advanced

Project Year #ofMessages #ofThreads #ofParticipants

Varnish Feb. 2006 –Dec. 2011 1224 340 82

Skolelinux Jan. 2002 – Dec. 2011 15548 6344 170

HISP Nov. 2008 – Dec. 2011 3984 2018 74

188 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

technological approach taken in Varnish doesn't
make it particularly simple for people to jump in,
but that is a trade-off we had no choice about since
the primary goal of Varnish was to be fast.

This reason serves for many FOSS projects with
domain/application specific nature. It argued that most of
the iconic FOSS projects that enjoyed success are
infrastructural and useful to every person.

A core developer and coordinator of the Varnish
project also indicated that no sustained attempt has been
made to attract and involve end-users in the development
process: “overall, I wouldn't say that we have not made
much effort in this area. A press conference was held
when release 1.0 came out, but nothing much has
happened since.”

One of the interview questions to the developers and/or
users involved in the HISP project was to compare the
problems associated with FOSS systems to those
associated with proprietary products. Here are selected
responses from some of the respondents:

‘the installation is difficult’, ‘the user’s interfaces
are not very attractive’, ‘there are multiple products
and you will be confused on what to choose’, ‘for
end-users it is very difficult to use’, ‘you are not
sure if the system you get is stable or otherwise’,
‘you don’t get proper support and on time’, ‘the
developers are distributed and you don’t get quick
help’, ‘documentation is awful so it is hard to learn
others code and you got to pay for that’, ‘there is
limited awareness in FOSS, usually it is technical
gurus who take part’, ‘if you want to customize or
modify FOSSs, it requires more technical skill’,
‘ most people don’t know about it. The educational
awareness is very low’.

All these issues appear mythically common to the
FOSS tradition, but they are yet concerns raised by end
users.

C. Features of Participatory Design in the Three
Projects

Participatory Design focuses on mutual learning
between developers and users, in organised settings of
co-operation. The key arena is usually workshops, and
two important techniques are brainstorming and
prototyping. Table 3 presents the findings in the three
projects along the PD features:

A user of Varnish from one of the client companies
indicated that he was sending reports in his own way and
over time he learnt to write good bug reports. He learned
what was needed as he submitted more and more bug
reports and from the feedback that he received. By just

learning how to interactively work with the developers,
he is now continuously assisting them in bug fixing,
testing, helping other users, and documentation areas.
This case demonstrates the possibility of empowering
users through long-term engagement in the development
process.

On the other hand, developers can gain domain
knowledge and expertise from users, proving that
learning in the participation process is a two-way street.
One of the main developers in Varnish stated: 'the biggest
problem was that I didn't run a big website myself, so I
was not intimately aware of all the "standard tricks of the
trade", lingo and products people talk about. Their
domain knowledge about web servers and related stuffs
was very important.'

All three projects have formed communities of
interests of their own, including programmers, technical
staff, academics and end-users. They operate in a
distributed environment, communicating mainly by email
and chat channels. Developers communicate on features
and solutions, users respond, and report bugs and
problems.

Being a core activity in PD, they hold formal
conferences and workshops. There is a users and
developers conference every year for the Skolelinux
project. One of the authors of this paper attended the user
conference in Oslo in October, 2008. It was a full-day
conference from 10:00 to 17:30. There were around 50
participants, most of them from Norway. There were also
representatives and presenters from Germany, Spain,
Brazil and Taiwan. The announcement was done through
the project’s wiki pages and emails. There were
participants from different school municipalities, students,
teachers, service providers of the software, developers
working full time on the projects, and translators.

The purpose of the conference was experience sharing
and introduction of new and future developments.
Broader issues were also raised, like how free software
meet the needs of the education sector and how such
systems are used in schools around the world. There
were around seven 45-minute presentations with time
allotted for discussions. This shows that the Inter-
contextual user workshop introduced by Obendorf et al
[41] as Distributed PD is already engrained in the FOSS
tradition.

The Varnish project hosts a similar developers and
users workshop Varnish project about once a year. The
goal is to bring together developers and users to discuss
their experiences as well as their requirements.

TABLE 3.

FEATURES OF PD IN THE THREE PROJECTS

 Skolelinux Varnish HISP/DHIS 2.0
Workshops Formal user conferences User group meetings twice a year Training workshops for users and conferences

with stakeholders
Brainstorming Communication through mailing

lists and online user forum
Communication over IRC channel
and mailing lists

Communication via mailing lists and pilot based
face to face meetings

Prototyping Incremental releases: current
version 6.0; ongoing software
development

Incremental releases: current
version 2.1.5; ongoing software
development

Incremental releases: current version 2.8;
ongoing software development

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 189

© 2013 ACADEMY PUBLISHER

The HISP project has a different and yet useful
experience in reaching out to end-users. In many places
where it enrols the software, it offers trainings for
selected representatives and health workers. The first
author of this paper had participated in a three-day
training workshop in Ethiopia. The training was given for
some 30 participants in one of the regional states of the
country. The trainees were recruited from remote districts
that had installed or that planned to install the DHIS
software. The participants were paid per-diem and the
workshop was fully sponsored by the HISP project.
During the workshop, participants learned the basics of
computer use and how to install and use the software.
The conference was held in a training centre with a
computer for each participant, in a kind of laboratory.

Another useful participatory method observed in the
Varnish project is the ‘Wish List’. The users submit ‘wish
lists’ to be incorporated in the upcoming versions of the
program. This is a kind of one requirements gathering
technique employed in the project. A user for example
indicated that he has already filed the critical
requirements to be incorporated in to the upcoming
Version 2.0.

Regarding brainstorming and prototyping, these
communities have neither the inclination nor the financial
resources to work face-to-face. The question is, then, can
electronic communication replace face-to-face co-
operation?

As indicated by the HISP [48, 49] and the organising
of the Creative Commons licences [51], one solution
could be knowledge support networks. In that case, and
contrary to most of the literature, participation in a CBPP
project may be supported by increasing the skill level of
the participating peers through extensive off-line and on-
line educational networks. Such networks may be
developed within existing educational networks, such the
HISP network or the Creative Commons host institution
network, or even be the result of corporate sponsoring.

D. Features of CBPP in the Three Projects
The hallmark of CBPP is an open architecture that

allows members with even modest technical skills to
contribute. Thus, the attributes of the IT architecture are
very important. Table 4 summarizes how the three cases
relate to these aspects.

As illustrated in Table 4, the two first criteria of CBPP,
granularity and modularity, are given ample attention in

the three projects. Thus, the IT architectures of the cases
are well suited to the culture and development of CBPP,
by allowing for decentralised development of small
contributions.

There is however, one obvious problem. Consider the
most famous CBPP solution—Wikipedia--which is the
result of thousands of distributed contributors. The
coding solution of Wikipedia is characterised by the fact
that it takes very little time to learn the codes required to
produce new content. However, as is shown here, this is
not the case with many FOSS projects. It takes a long
time and a great effort for end-users to be able to change
the code of Skolelinux, Varnish or HISP.

Yet quality and sustenance are salient challenges,
because when barriers are lowered to the minimum,
incompetent contribution and errors are inevitable. For
example, although Wikipedia’s open edit policy and
simplicity to contribute are arguably the primary reasons
for its success, concerns about quality remain. As
Wikipedia continues to mature, it appears to become
more difficult to keep up with the proliferation of
contributions and edits. This challenge is motivating the
development of tools to assist users in creating and
maintaining quality [18]. In addition, Wikipedia has
instituted a policy that requires contributors to register
after making a certain number of anonymous
contributions [3].

In fact, apart from easing the participation process for
end users, low-cost integration in successful peer
production projects includes both quality control over the
modules and a mechanism for integrating the
contributions (at low cost) into the finished product.
FOSS projects have mechanisms to protect themselves
from incompetent or malicious contributions [8, 9]
including formal rules, like the GNU General Public
License (GPL) that prevents defection, social norms and
redundancy of contributions and averaging out of
outliers—be they defectors or incompetents. We argue
that such mechanisms are more useful than erecting
barriers against bad contributions.
The three cases also show that end-users, like students in
Skolelinux and health practitioners in HISP, are never
active participants in development. It is only when
sufficient participation is there that users can exploit their
excess capacity in the production process.

TABLE 4.

FEATURES OF CBPP IN THE THREE PROJECTS

Features Skolelinux Varnish HISP/DHIS
Modularity

Collection of individual programs
for school purposes; thin client
architecture

Some parts are well modularized,
easily pluggable and have well
designed interfaces; but some parts
are not

Individual modules / interfaces on
versions 2.0 and above

Granularity

Varies on the individual application Fairly small subroutines for very
specific purposes.

Fairly small modules that can be
done independently

Low cost
integration

Version controlling using
subversion (SVN), easy institutional
rules

Subversion (former) and Git for
version controlling; consent of the
leaders prior to integration is a norm

Subversion (former) and GNU
bazaar for version controlling; and
guided by the leaders

Sources of excess
capacity

Programmers interested in
contributing to FOSS in schools;
Teachers willing to report bugs.

Programmers hired by Linpro;
technical people everywhere use the
application running large CMSs

Programmers, researchers, health
practitioners who are involved in
the HISP network

190 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

In Skolelinux, for example, even if the project has more
developers now, the end-users’ presence in the mailing
lists (compared to the claimed number of users, which is
in hundreds of thousands) is almost null. This shows the
need for a focused effort to ensure substantive user
participation, which directly dictates use and usability of
systems. It can be argued that partly the nature of the
packages, which are collections of many school
applications, are suspected of failing to offer fine-grained
components for anyone to easily act on them.

E. Summing-up Findings
Concluding this discussion we offer the following

findings. First, the FOSS community may improve its
usability and its relationship to end-users by adopting
some of the principles of PD and CBPP. The most
important element from PD is the focus on mutual
learning, which is an important extension to the FOSS
culture. Regarding the specific techniques of PD, such as
brainstorming and prototyping, the FOSS community
needs to find ways to do this over electronic media. A
number of promising tools can facilitate this.

Regarding the elements from the CBPP approach, as
the three cases demonstrate, the IT architecture of FOSS
solutions can be designed in a way that allows for local
innovation and adaptation, in line with the CBPP
approach. FOSS could attract a large number of volunteer
end-users to participate – given that modularity,
granularity and low cost integration mechanisms are
properly handled.

The challenge, therefore, is to create an environment of
low-cost integration, allowing non-techies to extend the
solution. The costs of participation may be reduced only
if the required contribution becomes smaller, hence, we
need to increase granularity. Similarly, the integration
mechanism has to be affordable both for the collecting
entity and the contributing peers.

Another useful observation is that the problems caused
by the physical distribution are ameliorated by the global
network infrastructure. At least theoretically, the
challenges presented by the organisational and temporal
distributions can be helped by the features of CBPP.
These lessons then can alleviate the challenges of PD and
facilitate the transition to DPD.

By engaging typical users in the development process,
as Lethondal and Mackay [33] noted, FOSS projects can
create a networked development community that can do
for usability what it has already done for functionality
and reliability. This makes the best use of excess
capacities in FOSS projects, one of the core elements
underlying the CBPP model.

VI. LIMITATIONS AND PRACTICAL IMPLICATION

A. Limitations
As this study bases itself on three cases, it will be

difficult to make generalizations on the larger FOSS
context. However, the highlighted CBPP and PD issues
provide insights for the practitioners and for those who
want to conduct similar studies on larger data sets. The

heterogeneous nature of FOSS projects in reality also
limits the intent of making generalizations.

One such variation lies in the underlying technology
that different FOSS projects use. For instance recent
version controlling tools could facilitate mass
participation in a better way than those that were previous
used by the projects studied here. Further studies need
to look in to the impact of such emerging technologies,
even on the same projects.

The data for the study were mainly obtained from
informants who were actively participating in the
development and translation. Future research can
possibly consult a diverse set of stakeholders, particularly
the end users.

B. Implications for Research and Practice
We hope that this study, with its systematic and

detailed literature review, complements the IS literature
and all distributed software development practices in
particular; previous research was limited mainly to
commercial project environments.

As the FOSS model of production is spreading to other
cultural and knowledge production domains [9, 10], such
deeper analysis in to the model is crucial. The attmept
made here in addressing its common usability related
challanges through revealing linking concepts with PD,
can be emperically and theoretically investigated in other
domains with similar structure.

The analysis and discussion of the FOSS-related issues
contribute to the current ongoing research body on how
best to understand the FOSS phenomenon. Equally,
practitioners gain from the analysis and discusion as wish
to improve participation and usability of their systems.

VII. CONCLUSION

The free software movement is typified by endowing
any user of software with core rights of use, distribution,
improvement and study. The FOSS community has
produced solutions such as Linux, Firefox and Apache.
There are however, reasons for concern for the FOSS
production model for end-user software, which is often
perceived as being difficult to use.

First, this study reveals that paradoxically, the very
model that led to the success of FOSS may fail to
produce good end-user software. Several factors explain
this finding, the most critical of which is the lack of real
end user participation. Because of this, even the assumed
and claimed re-balancing of power relationship by the
movement does not seem to have fully materialised. It is,
therefore, necessary to devise methods enabling wider
and deeper participation of end users in design and
development.

Second, we suggested that the FOSS community can
improve usability and its relationship to end-users by
adopting some of the principles and practices of PD, over
the distributed network. The most important element
from PD is the focus on mutual learning and
empowerment, which is an important extension to and
from the FOSS culture itself. Regarding the specific
techniques of PD, such as brainstorming and prototyping,

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 191

© 2013 ACADEMY PUBLISHER

and also inter-contextual workshop of DPD, the FOSS
community needs to strengthen the ways to do this over
electronic media. In addition, a more conscious effort to
bring new users into the community and encourage their
participation is needed.

Third, we argued that the bridge between the FOSS
and PD/DPD traditions lies in the implementation and
exercise of the CBPP model. This allows the FOSS
community to integrate participatory mechanisms for
participants without programming skills. This also
facilitates the transition of the PD tradition to DPD, given
the challenges to this approach.

These changes are easier said than done, but we
believe that the emerging social network systems such as
Facebook and LinkedIn illustrate the possibility and new
ways of approaching this issue. Certainly, if the
production model of FOSS is to play a major role in
developing end-user software, these are crucial elements.
At the same time we should emphasise the deeper lesson:
a truly participative process is not one that allows anyone
to contribute freely, but the one that provides the
infrastructure that users need to acquire the skills to
participate in the development process. In this context,
then, freedom does equal knowledge. The extent to which
this equation has been internalised by most FOSS project
still remains to be seen.

REFERENCES

[1] Andersen-Gott M, Ghinea G, Bygstad B. Why do
commercial companies contribute to open source software?
International Journal of Information Management 12; 32
(2): 106-117.

[2] Andreasen M, Nielsen H, Schrøder S and Stage J.
Usability in open source software development: Opinions
and Practice. Information Technology and Control 2006;
25: 303-312.

[3] Anthony D, Smith S, Williamson T. The quality of open
source production: Zealots and Good Samaritans in the
case of Wikipedia. Technical Report TR2007-606,
Dartmouth College 2007.

[4] Bach P, DeLine R, Carroll J. Designers wanted:
participation and the user experience in open source
software development. Proceedings of CHI conference on
human factors in computing systems 2009; 985–994.

[5] Barki H, Hartwick J. Rethinking the Concept of User
Involvement, and User Attitude. MIS Quarterly 1994;
18(1): 59-79.

[6] Barcellini F, Detienne F, Burkhardt J. User and developer
mediation in an open source software community:
boundary spanning through cross participation in online
discussions. International Journal of Human-Computer
Studies 2008; 66: 558–570.

[7] Bélanger, M. The Internet CourseReader: An educational
computer communications program for organizations in the
developing world. Paper presented at the Networked
Labour Conference, London School of Economics 2002;
308– 311).

[8] Benkler Y. Coase's Penguin, or Linux and the Nature of
the Firm. Yale Law Journal 2002; 112(79).

[9] Benkler Y. Sharing Nicely: On Shareable Goods and the
Emergence of Sharing as a Modality of Economic
Production. Yale Law Journal 2004; 114 (85).

[10] Benkler Y. The Wealth of Networks: How Social
Production Transforms Markets and Freedom. Yale
University Press: New Haven, 2006.

[11] Bødker K, Kensing F, Simonsen J. Participatory IT
Design. Designing for Business and Workplace Realities.
MIT press: Cambridge, Massachusetts, 2004.

[12] Boivie I, Gulliksen J, Göransson B. The lonesome
cowboy: A study of the usability designer role in systems
development. Interacting with computers 2006; 18 (3):
601-634.

[13] Bonaccorsi A, Rossi C. Why open source software can
succeed. Research Policy 2003; 32:1243–1258.

[14] Bygstad B, Ghinea G, Brevik E. Software development
methods and usability: Perspectives from a survey in the
software industry in Norway. Interacting with computers
2008; 20 (3): 375-385.

[15] Cherry C, Macredie R. The Importance of Context in
Information System Design: An Assessment of
Participatory Design. Requirements Engineering 1999; 4:
103-114.

[16] Chin G. A case study in the participatory design of a
collaborative science-based learning environment. PhD
dissertation, Virginia Polytechnic Institute and State
University 2004.

[17] Crowston K, Howison J. Hierarchy and centralization in
free and open source software team communications.
Knowledge, Technology and Policy 2006; 18 (20).

[18] Druck G, Miklau G, McCallum A. Learning to predict the
quality of contributions to Wikipedia. In WIKIAI 08 2008;
7–12.

[19] Ehn P, Kyng M. The collective resource approach to
systems design. In Bjerknes, G. et al. (eds.) Computers and
Democracy - a Scandinavian Challenge. Avebury, 1987.

[20] Feenberg A. Questioning Technology. Routledge: New
York, 1999.

[21] Fitzgerald B. The Transformation of Open Source
Software. MIS Quarterly, 2006; 30: 587–598.

[22] Floyd C, Mehl W, Reisin F, Schmidt G, Wolf G. Out of
Scandinavia: Alternative approaches to software design
and system development. Human-Computer Interaction
1989; 4(4): 253–350.

[23] Gärtner J, Wagner I. Mapping Actors and Agendas:
Political Frameworks of Systems Design and Participation.
Human-Computer Interaction 1996; 11: 187–214.

[24] Greenbaum J, Kyng M. Design at work: Cooperative
design of computer systems. Hillsdale: NewJersy, 1991.

[25] Grudin J. Obstacles to Participatory Design in Large
Product Development Organizations. In Schuler D,
Namioka A. (Eds.) Participatory design: principles and
practices. Erlbaum, 2009.

[26] Gumm D. Distributed Participatory Design: An inherent
Paradox? Proceedings of IRIS29 2006a.

[27] Gumm D. Distributed Software Development – a
Taxonomy. IEEE Software, Special Issue on GSD 2006b.

[28] Iivari, N. Participatory design in OSS development:
interpretive case studies in company and community OSS
development contexts. Behaviour & Information
Technology, first published in January 2011 (iFirst); 1-15.

[29] Iivari N. Empowering the users? A Critical Textual
Analysis of the Role of Users in Open source Software
Development. AI & Soc 2009; 23: 511-528.

[30] Iivari N. "Constructing the users" in open source software
development: An interpretive case study of user
participation. IT & People 2009; 22: 132-156.

[31] Kensing F, Blomberg J. Participatory Design: Issues and
Concerns. CSCW 2006; 7:167-185.

192 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

[32] Klein H, Myers M. A set of principles for conducting and
evaluating interpretive field studies in information systems.
MIS Quarterly 1999; 23: 67–94.

[33] Letondal C, Mackay W. Participatory programming and
the scope of mutual responsibility: balancing scientific,
design and software commitment. Proceedings of the
eighth conference on Participatory design: Artful
integration: interweaving media, materials and practices,
2004.

[34] Loebbecke C, Powell, P. Furthering Distributed
Participative Design: Unlocking the Walled Gardens.
Scandinavian Journal of Information Systems 2009; 21:
77-106.

[35] Luke R, Clement A, Terada R, Bortolussi D, Booth, C,
Brooks D, Christ D. The Promise and Perils of a
Participatory Approach to Developing an Open Source
Community Learning Network. In Proceedings of the 8th
Participatory Design Conference, ACM 2009; 11-19.

[36] Lynch T, Gregor S. User Participation in Decision Support
Systems Development: Influencing System Outcomes.
European Journal of Information Systems 2004; 13: 286-
301.

[37] Matz A. Scattered Locations and Different Stakeholder
Views. Proceedings of the NordiCHI Workshop 2006.

[38] Namioka H, Rao C. Introduction to Participatory Design:
Field Methods Casebook for Software Design. John Wiley
and Sons: New York, 1996.

[39] Nichols D, Thomson K, Yeates S. Usability and Open-
Source Software Development. ACM, SIGCHI 2001.

[40] Nichols D, Twidale M. Usability Processes in Open
Source Projects. Softw Process Improv Pract 2006; 11:
149-162.

[41] Obendorf H, Janneck M, Finck M. Intercontextual
Distributed Participatory Design: Communicating Design
Philosophy and Enriching User Experience. Scandinavian
Journal of Information Systems 2009; 21: 53-78.

[42] Pekkola S, Kaarilahti N, Pohjola P. towards Formalised
End-User Participation in Information Systems
Development Process: Bridging the Gap between
Participatory Design and ISD Methodologies. Proceedings
of the 9th conference on PD 2006; 9: 21-30.

[43] Radtke N, Janssen M, Collofello J. What Makes
Free/Libre Open Source Software (FLOSS) Projects
Successful? An Agent-Based Model of FLOSS Projects.
International Journal of Open Source Software &
Processes 2009; 1(2): 1-13.

[44] Raymond E. The Cathedral and the Bazaar. O’Reilly and
Associates: CA, 2001.

[45] Rossi M. Decoding the 'Free/Open Source (F/OSS)
Software Puzzle': A Survey of Theoretical and Empirical
Contributions. Quaderni 2004; 1(424).

[46] Schuler D, Namioka A. Participatory Design: Principles
and practices. Hillsdale: New Jersey, 1993.

[47] Stallman R. Free Software, Free Society: Selected Essays
of Richard M. Stallman. In Gay, J. (Eds) GNU Press:
Boston, Massachusetts, 2002.

[48] Staring K, Titlestad O. Development as a Free Software:
Extending Commons Based Peer Production to the South.
International Conference on Information systems. ICIS
2008.

[49] Titlestad O, Staring K, Braa J. Distributing Development
to Enable User Participation: Multilevel Design in the
HISP Network. Scandinavian Journal of Information Sys-
tems 2009; 21: 27-50.

[50] Torpel B. Participatory Design: A Multi-voiced Effort. In
Proceedings of the 4th Decennial Conference on Critical
Computing: Between Sense and Sensibility. ACM 2005.

[51] Tsiavos P. Cultivating Creative Commons: From Creative
Regulation to Regulatory Commons. London School of
Economics, London (2007) Available at:
http://www.lse.ac.uk/collections/informationSystems/pdf/t
heses/tsiavos.pdf

[52] Weber S. The Success of Open Source. Harvard University
Press: Cambridge, Massachusetts and London, 2004.

[53] Ye Y, Kishida, K. Toward an understanding of the
motivation Open Source Software developers.
Proceedings of the 25th International Conference on
Software Engineering 2003.

[54] Yeats D. Open-source Software Development and User-
Centered Design: A Study of Open Source Practices and
Participants. A Dissertation in Technical
Communication and Rhetoric. Texas, 2006.

[55] Yin R. Case Study Research. Thousand Oaks, California,
2003.

[56] Zhao L, Deek, F. Improving open source software
usability. In: N. Romano, ed. Proceedings of 11th
Americas conference on information systems 2005; 923–
928.

[57] Zhao L, Elbaum S. Quality Assurance Under the Open
Source Development Model. The Journal of Systems and
Software 2003; 66: 65-75.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 4, NOVEMBER 2013 193

© 2013 ACADEMY PUBLISHER

