
Fast and Scalable IP Address Lookup with Time
Complexity of LogmLogm(n)

Abhishant Prakash

Motilal Nehru National Institute of Technology, Allahabad (INDIA)
Email: prakashabhishant@gmail.com

Alok Sagar Gautam

Hemawati Nandan Bahuguna Central University, Garhwal (INDIA)
Email: phyalok@gmail.com

Abstract— Router is a device which is used to route the
incoming data packets from the sender to the destination
using the IP address of the destination side. Since the router
performs the task in the real time so there are millions and
millions of the data packets which the router has to process.
The main task in the routing process is to find the
corresponding port number for a particular IP address
entry stored in the router. Since the router performs the
searching task for the millions of incoming data packets an
efficient searching algorithm is required to be performed on
the routing table. In this paper we proposed an efficient
searching algorithm for the routing table of the routers.
Various algorithms has been performed in this field with the
best time complexity of logm(n) of the balanced m way
search tree and log2log2(n), we in this paper proposed an
efficient searching algorithm with the time complexity of
logmlogm(n) in the worst case applicable to both the IPV4
and IPV6.

Index Terms— IP address lookup, IPV6, logmlogm(n)
complexity, IPV4.

I. INTRODUCTION

The internet technology has seen an admirable change
in the last decade. With the increasing number of hosts
and domains over the internet the higher bandwidth and
high speed data packet transfer has always been a topic
attracting scientists and researchers from all over the
world. With the increasing number of hosts over the
internet a new Internet Protocol Version named IPV6
came into existence. The data packet transfer is mainly
handled by the router who’s task is to forward the
incoming data packets to their destination IP address. The
data packets consists of two fields namely the senders IP
address and receiver’s IP address. The task of the router
is to forward the data packet to the correct port number
using the longest matching prefix theorem.

As router performs IP address lookup for hundreds and
millions of data packets these require the secondary
storage devices since the primary memory does not have
enough sufficient space to store all the IP address with
their respective port number. The efficiency of any
algorithm is based on its memory size required, lookup
speed, pre-processing requirements, scalability and
flexibility towards the routing table. The most important

among them is the lookup speed which is directly
associated with the number of memory accesses required
for searching. The proposed algorithm makes use of the
balanced m way search tree and the hash table to search
for any prefix, search gets completed in the following two
cases first, when there is a matching prefix, second when
there is no match found and in case of matching the
output port is remembered and returned in order to
transfer the data packet to its destination address as both
IP address and output port is required to transfer the data
packet to its destination.

The main idea behind this paper is to make use of the
software based scheme for IP address lookup which
requires some microcontroller operations.

II. IP ADDRESS LOOKUP PROBLEM

A. Related Work
A.1 Hardware Based Schemes

Several schemes have been proposed in this direction
including both the hardware based schemes and software
based schemes. The most important among them are as
follows:

 McAuley, Francis proposed the structure of the
TCAM [1]. TCAM stands for Ternary Content
Addressable Memory. It is of the same size as of the
Static RAM but has higher power consumption, small
size and to add more it has high cost. Figure 1 shows the
basic structure of the TCAM

Fig 1. Basic Structure of TCAM

58 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jait.5.2.58-64

Song and Longwood gave the extension to the TCAM,
an architecture called BV-TCAM [2] which combines the
TCAM and bit vector algorithm to effectively compress
the data representation and boost the system throughput.
Another hardware based scheme includes of cache based
IP address lookup architecture proposed by Kasnavi,
Berube, Gaudet, and Amaral [3], which is comprised of
non-balancing Multizone Pipeline Cache (MPC) and of a
hardware-supported IP routing lookup method. They use
two stage pipelines for a half prefix/half full IP address
cache that results in lower activity than conventional
caches. . IP address lookup has also been proposed using
ring pipeline architecture for tree based search engines by
Baboescu , Tullsen, Rosu, and Singh [4]. The pipeline
stages are configured in a circular multi point access
pipeline so that search can be initiated at any stage. Two
more algorithms named Elevator-stairs and log W-
elevators [5] have been proposed by Sangireddy,
Futamura, Aluru, and Somani, which is scalable and
memory efficient. RAM based hardware architecture with
the lookup speed of 66 MLPS have also been proposed in
this area by Meribout and Motomura [6]. In this design a
commodity Random Access Memory (RAM) is needed in
their design; and achieved lookup rate is reasonably low.
Another scheme by Gupta, Lin, and McKeown includes a
route lookup mechanism implemented in a pipeline
fashion with speed of one route with every memory
access [7].
A.2 Software Based Models

Several software based model have been proposed the
most common tree based model including Ruiz –Sanchex,
Biersack, Dabbous model [8]. Figure 2 shows the general
trie structure. Trie stores prefixes into the node and each
node is defined by the path from the root node of the trie
but the main disadvantage of this scheme was that a lot of
empty internal nodes were present which increases the
number of memory accesses. Another tree based
architecture IP address lookup includes balanced binary
search tree by Lim, Kim and Yim [9] which uses
Binary Prefix Tree theorem to sort the different prefixes
in their increasing order. In order to reduce the number of
memory accesses in a binary trie multibit examining by
Chao [10] and examining more than one bit at a time
using prefix expansion by Srinivasan , Varghese [11] and
level compressed tries applies i.e. multibit tries with path
compression techniques by Nilsson, Karlsson
[12].Balanced m way tree structure includes IP address
lookup using balanced multiway tree by Lim, Kim and
Lee [13] in which different prefixes were sorted with
BPT theorem and were arranged in the form of balanced
m way tree with time complexity of logmn.
A.3 Hashing Based Schemes

Several hashing based schemes have been proposed in
this area. The first one is by Wadvogel and Varghese to
organize a routing table by prefix length and apply binary
search on the prefix length in the routing table. One of the
most important proposed schemes in this area is of lulea
scheme by Yu, Mahapatra, Bhuyan [15]. The scheme
reduces table into small data structures which fits into the
cache. But the major disadvantage of this scheme is the

incremental update since it requires a complex
preprocessing and also it cannot be used for larger table.

 Fig. 2 Trie

III. PROPOSED SCHEME

A. Prefix Sorting.
The following table I shows the set of prefixes for

which the proposed algorithms is performed. The prefix
taken makes utilization of the first three bits of them to
identify the family of prefixes. Similarly the algorithm
can be implemented to find the network part of the
incoming data packets from the first four bits of the
destination IP address. The proposed algorithm makes
utilization of the BPT theorem in order to sort the
prefixes in their sorted order.

TABLE I:

PREFIX TABLE FOR PROPOSED ALGORITHM
Prefix Name Binary Equivalent

a (000)
b (001)
c (111)
d (100)
e (111)01
f (100)111
g (010)
h (111)11
i (011)
j (110)
k (010)011
l (110)101

m (101)
n (000)11
o (000)101
p (001)011
q (000)001
r (000)111
s (001)11
t (000)01
u (001)000
v (101)01
w (001)001
x (011)110
y (101)11
z (100)10

The set of prefixes taken were arranged into different

sets of balanced m way tree. In the proposed algorithm
the first three bits of the prefixes are used to build the

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014 59

© 2014 ACADEMY PUBLISHER

hash the hash table and each hash table has a pointer to
their respective balanced m way tree. The prefixes in the
m way tree are stored with the BPT theorem which states
that for two prefixes Pi and Pj with n(Pi) < n(Pj) and S(Pj ,
n(Pi)) defines the most significant bits of the prefix Pj
then Pi is smaller than the prefix Pj if Pi < S(Pj , n(Pi)) and
else vice versa. The third condition which arises is case of
equality in that case the (n(Pi)+1) th bit of Pj is checked if
it’s equals to 1 then Pj is greater else Pi is greater.

The main idea behind this approach is to build the
balanced m way tree in different segments.

B. Constructing the Tree
The proposed tree consists of two segments; first

segment consists of the hash table. In our proposed
algorithm we have opted for first three bits of the prefixes

to build the hash table, so the size of the hash table is 23
similarly to identify the network from the IP address of
the receiver IP address from the data packet first 4 bits
can be used to build the hash table.

The hash table contains the two fields: first the pointer
to its sub tree and second the key part which is either zero
or one. Zero entry in the hash table defines no sub tree
whereas the entry one denotes presence of the sub tree in
the respective field of the hash table

The second segment of the tree consists of the different

segments of balanced m way tree. Fig. 3 shows the tree
structure of the proposed algorithm. For the given fig. 3
we have made balanced 5 way tree which can be
generalized for m way tree. At each level of the m way

Fig 3. Proposed Tree Structure for the Algorithm.

60 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

tree we have defined the hash table so that search can be
performed faster. Since we have taken prefixes of
maximum length of six and there are prefixes starting
with a particular three bit segments in a particular sub

segment of the main hash table so the size of the hash
table at each sub tree level is 23. Hence by making the
hash table we have reduced the time complexity for the
searching purpose.

A: Child Valid 1 B. Prefix 1 C. Subtree Pointer 1 D: Child Valid E. Prefix 2 F: Subtree Ptr. 2
G: Child Valid 3 H: Prefix 3 I: Sub tree ptr. 3 J: Child Valid 4 K: Prefix L: Sub tree ptr. 4

C. Constructing the Routing Table
The routing table is constructed with the two segments

in it. The first segment is the range table which contains
the entry from 0 to 23-1. To efficiently perform the
searching we have constructed the range table and apart
from this there is a main table which contains various
entries. Table II shows the constructed routing table.

The Table II shows the routing table with the range
table and range table and the main table. To look for any
prefix first search is done on the range table and then it
will be done on main table.

D. Constructing the Routing Table
The search gets performed in the following two cases

when there is a matching prefix found or when there is no
matching prefix found. In both the cases the output port is
remembered and is returned after the search gets

completed. For e.g. for the input of 000001110001 the
first three are used for the searching purpose in the main
hash table. The search is redirected to a’s sub tree at each
level search is performed in the hash table first and then
search is carried in the fashion of m way search at its
child nodes. The search gets completed at the prefix q
and the longest matching prefix is 000001 and hence
output port corresponding to the q prefix is returned.

E. Updation.
The algorithms are considered on the fact of insertion

and deletion also. To insert any element if there is enough
space in the routing table as well we just need to find the
main hash table entry where it belongs to and the prefix
can be inserted into the m way tree and correspondingly
hash table entry can be modified and similar modification
can be done in the routing table. In the case of deletion
the node can be deleted from the m way tree of the

A B C D E F G H I J K L M

0 a(000) 8 0 - - 0 -
-

0 -
-

0

0 b(001) 10 0 - - 0 -
-

0 -
-

0

0 g(010) 11 0 - - 0 -
-

0 -
-

0

0 i(011) 12 0 - - 0 -
-

0 -
-

0

0 d(100) 13 0 - - 0 -
-

0 -
-

0

0 m(101) 14 0 - - 0 -
-

0 -
-

0

0 j(110) 15 0 - - 0 -
-

0 -
-

0

0 c(111) 16 0 - - 0 -
-

0 -
-

0

1 o(000)101
-

1 - - 0 -
-

0 -
-

0

0 q(000)001
-

0 t(000)01 - 0 n(000)11
-

0 r(000)111
-

0

0 u(001)000
-

0 w(001)001 - 0 p(001)011
-

0 s(000)11
-

0

0 k(010)01
-

0 - - 0 -
-

0 -
-

0

0 x(011)10
-

0 - - 0 -
-

0 -
-

0

0 z(100)10
-

0 f(100)111 - 0 -
-

0 -
-

0

0 v(101)01
-

0 g(101)11 - 0 -
-

0 -
-

0

0 l(110)101
-

0 - - 0 -
-

0 -
-

0

0 e(111)01
-

0 f(100)111 - 0 -
-

0 -
-

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Index Sub
ptr

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

TABLE II
CONSTRUCTED ROUTING TABLE FOR PROPOSED SCHEME

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014 61

© 2014 ACADEMY PUBLISHER

respective main hash table and in same manner it can be
deleted from the routing table.

IV. PERFORMANCE ANALYSIS

A. Complexity Analysis.
In the proposed algorithm we first find the main hash

table entry and if any sub tree is present in it we proceed
to it. Searching in the main hash table takes O(1) time. In
the search down the balanced m way tree, at each level
we look into the corresponding hash table for the search
node if its present search gets completed there and output
port is returned in case it’s not matched the search
continues in the further depth. The proposed algorithm
works in logmlogm(n). To prove the time complexity first
we find out the height of the balanced m way tree. Fig. 4
shows the general structure of m way tree .From this we
find out the height of balanced tree.

The number of keys:
 i=h

n >= 1+ (m-1) ∑(2mm-1) (1)
 i=1

 = 1+2(m-1) {(mh – 1)/ (m-1)} (2)
 = 2mh -1 (3)

Therefore,
mh <= (n+1)/2 (4)
Taking logm on both the sides we get:
h<= logm(n+1)/2 (5)

So the height of the balanced m way tree is logm(n).
Now at each level the m way search is performed in the
proposed algorithm and looking into the hash table takes
O(1) time so the total complexity of the proposed
algorithm comes out to be logmlogm(n) + O(1). Hence the
proposed scheme gives the time complexity of
logmlogm(n). In the worst case the m way tree splits in
m/2 ways so the worst case height of the tree structure
would logm/2(n), hence in the worst case the time
complexity of the proposed algorithm is logm logm/2(n).

B. Performance Evaluation.

The following table III shows the performance
evaluation of the proposed algorithm and various
previous algorithm for various input size and their
corresponding time complexity.

TABLE III:
PERFORMANCE ANALYSIS

The following fig. 5 shows the graphical analysis of

the proposed scheme and previous scheme for the set of
results given in Table III.

Fig.5 Graphical Analysis

Proposed Algorithm vs Previous Algorithms

N

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

T
(N

)

0

5

10

15

20

25

30

T(N)=Log2(N) {Binary Search}

T(N)=Log
5
(N) { Balanced B tree order 5}

T(N)=Log
5
(Log

5
(n)) { Proposed Algorithm}

T(N)=nLog
2
(N) { LC Trie }

Input Size
 (N)

Binary
search

LC-Trie M-way
tree(m=5)

Proposed
Scheme

Log2(N) Nlog2(N) Logm(N) Logmlogm(N)

4.0000 2.0000 2.0000 0.8674 -0.0920

16.0000 4.0000 64.0000 1.7228 0.3379

1000.0000 9.9657 9965.7842 4.2920 0.9051

10000.0000 13.2927 132877.1238 5.7227 1.0838

100000.0000 16.6096 1660964.064 7.1534 1.2225

Fig 4. General structure of m way tree.

62 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

C. Pseudo Code for Searching

Search_prefix (prefix p, struct node *n, int *pn)
 {

//look corresponding entry in hash table at the level
//log(n)/2

hash[log(p)/2]==1 then
call search(hash[log(p)/2],prefix p, int* pn);
else
remember the output port;
return;
else
call search(prefix p, n->child(*pn),pn);
}
Search (struct node * n, prefix p, int* pn)
{
If p==NULL
return;

 Search for the next three bits value label in hash table
if(entry in hash table==1) then
remember output port;
if (p<n->key[1])
{
*pn=0;
return0;
}
Check for N bits of prefix with matched prefix
if (equal)
return current remember output port;
else return previously remembered output port;
else
*pn=n->count //total keys in current node
While(prefix<n->key(*pn)&&*pn>1)
{
(*pn)--;
}
return 0;
}

V. CONCLUSION.

The paper presented the IP address lookup for the
routers with time complexity of logmlogm(n) where n is
the total no. of bits of the prefix. The tradeoff which can
be used for this scheme to build first hash table is
log2(n)/2. The proposed scheme is compatible for both
the IPV4 and IPV6 as the proposed scheme depends upon
the number of prefixes and not on the length of the
prefixes. As far as Updation is concerned the proposed
scheme is partially updatable which depends upon the
number of left entries in the routing table. If there are
vacant entries in the routing table then Updation is
possible.

VI. REFERENCES

[1] A. McAuley, P. Francis “Fast routing lookup using
CAMs,” Proc. IEEE INFOCOM 93(1993) 1382-1391.

[2] H. Song and J. W. Lockwood, "Efficient packet
classification for network intrusion detection using FPGA,"
in Proceedings of the 2005 ACM/SIGDA 13th
international symposium on Field-programmable gate
arrays Monterey, Cali fornia, USA: ACM, 2005.

[3] S. Kasnavi, P. Berube, V. Gaudet, and J. N. Amaral, "A
cache-based internet protocol address lookup architecture,"
Comput. Networks, vol. 52, no. 2, pp. 303-326, 2008

[4] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, "A
Tree Based Router Search Engine Architecture with Single
Port Memories," in Proc. ISCA '05, 2005.

[5] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani,
"Scalable, memory efficient, high-speed IP lookup
algorithms," IEEE/ACM Trans. Netw., vol. 13, no. 4, pp.
802-812, 2005.

[6] M. Meribout and M. Motomura, "A new hard- ware
algorithm for fast IP routing targeting pro- grammable
routers," in Network control and engineering for Qos,
security and mobility II: Kluwer Academic Publishers,
2003, pp. 164-179.

[7] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in
hardware at memory access speeds,” in Proc. IEEE
INFOCOM’98, Session 10B-1, San Francisco, CA, pp.
1240–1247.

[8] M.A. Ruiz –Sanchex, E.W. Biersack, W. Dabbous,”
Survey and taxonomy of IP address lookup algorithms”,
IEEE networks (2001) 8-23.

[9] H. Lim, H. Kim, C. Yim,” IP address lookup for internet
routers using balanced binary search trees,” IEEE
transactions on Communications Vol. 57, no.3 March 2009.

[10] H. Jonathan Chao,” Next generations routers,” Proc. IEEE
90(9) (2002) 1518-1558.

[11] V. Srinivasan , G. Varghese,” Fast Address lookup using
controlled prefix expansion,” in Proc. IEEE ACM
sigmetrics 98 conf., Madison WI, 1998 pp. 1-11.

[12] S. Nilsson, G. Karlsson,”IP address lookup using LC
tries,” Proc. IEEE J.Select.areas Commun. 17(1999) 1083-
1092.

[13] H. Lim, W. Kim, B. Lee, C. Yim,” High-speed IP address
lookup using balanced multiway tree,” Computer
Communications 29(2006) 1927-1935.

[14] M. Wadvogel, G. Varghese, J. Turner, B. Plattner,”
Scalable high speed IP routing lookups” in Proc. IEEE
ACM SIGCOMM 97 Cannes, France 1997 pp. 25-35.

[15] H. Yu, R. Mahapatra, L. Bhuyan,” A Hash-based Scalable
IP lookup using Bloom and Fingerprint Filters,” in Proc.
Global Comm. Conference IEEE(2009).

Abhishant Prakash is an undergraduate
student in the National Institute of
Technology, Allahabad India. His area of
interests includes networking &
communication and algorithms design.
He has attended various National
Conferences and has presented papers in
them.

Alok Sagar Gautam is working as
Assistant Professor in the department of
physics, HNBGU Central University
Garhwal, Uttrakhand, India. Since 2006,
he was scientist at Indian Institute of
Tropical and Meteorology, Pune and
during his employment at Pune, He
participated in various observational

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014 63

© 2014 ACADEMY PUBLISHER

field campaigns i.e. 28th Indian Scientific Expedition to
Antarctica, STORM CAIPEEX program and published several
scientific papers in good impact factor journals. He has also
Junior Associate of ICTP Italy. He participated several National
and International conferences and presented the papers and
published the papers in proceedings.

64 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 5, NO. 2, MAY 2014

© 2014 ACADEMY PUBLISHER

