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Abstract—Taking into considerations the effect of the 

Earth’s oblateness parameters, particularly J2, the present 

work assess such influence on the formation flight of micro 

satellites in near equatorial low orbits. The modified 

Clohessy-Wiltshire equations are reviewed to arrive at a 

convenient formulation as a set of linearized differential 

equations of motion to include the J2 effects in the LVLH 

frame of reference. Comparison made on the orbit of twin-

satellite formation flying with respect to that predicted by 

baseline Hill-Clohessy-Wiltshire equation, and to similar 

results in the literature, exhibit the plausibility of the work. 

 

Index Terms—Orbital Mechanics, Gravitational Potential, 

Near-Equatorial Low Orbits, Spacecraft Formation Flying. 

I.  INTRODUCTION 

Interest in the relative motion dynamics and control of 

spacecrafts in formation has grown due to the need for 

deploying multiple spacecrafts flying in precise 

formations for Earth or space observation,orspace 

communications, and the affordability of smaller 

satellites, with capabilities equivalent or better tan a 

single larger satellite, due to their modularity, simplicity, 

ase of launch and graceful degradation (Alfriend et al [1], 

Schaub et al,[2], Schaub [3], Schaefer [4], Sengupta 

[5]).Specific insight on formation geometry is needed for 

mission planning and reconfiguration of formation 

dynamics and control. As stipulated by Yeh and Sparks 

[6], closed paths of relative motion traced out by a 

spacecraft under force-free motion permitted by the law 

of physics can be defined by Hill's equations. These are 

known as “legal formations” which satisfy the Hill-

Clohessy Wiltshire (HCW) equations and must lie on the 

intersection of a plane and an elliptic cylinder with an 

eccentricity of 3 / 2 in a moving coordinate system fixed 

to the chief spacecraft in the Local-Vertical-Local-

Horizon (LVLH) frame.  

Xiang and Jørgensen[7] have distinguished satellite 

formation flight compared to constellation if the relative 

position and relative velocity between the satellites in 

formation flight are controlled, and their relative altitudes 

can be controlled at certain parts. In many proposed 

missions, satellites are required to form a circular 

aperture in the plane perpendicular to the line-of-sight. 

For the optimal utilization of formation flight of micro-

satellites, their relative motion dynamics and control 

under the existence of gravitational and environmental 

perturbations should be well taken into considerations, to 

avoid their relative motion to keep changing and unstable. 

The main advantage of a LEO constellation over less 

complex, higher-altitude systems with fewer satellites is 

that the limited available frequencies that are useful for 

communicating through the atmosphere can be reused 

across the Earth's surface in an increased number of 

separated areas, or spotbeams, within each satellite's 

coverage footprint (Wood [8]).In addition, some 

countries that are geographically located straddling or 

near the Earth’s equator may have some interests in Near 

Equatorial orbits for their development (Djojodihardjo 

and Harithuddin [9]. Djojodihardjo and Zhahir [10]). In 

the well known HCW equation, the Earth is considered to 

be a point mass. However, since the Earth gravitational 

potential can be better represented by spheroidal (Vinti, 

[11], Djojodihardjo [12], Djojodihardjo and Kadarisman 

[13] or other harmonics (Alfriend et al, [1]), more 

accurate solution of legal formations should incorporate 

such gravitational potential, as well as other relevant 

disturbances. Without considering other disturbances, the 

dominant Earth's oblateness parameter,J2, for both the 

chief and the deputy satellite is here incorporated using 

linearized analysis, producing analytical solutions similar 

to that of the HCWequations. Such J2 -Modified Hill’s 

Equations describe the mean motion changes in both the 

in-plane and out-of-plane motion more accurately. By 

considering Near-Equatorial, the influence of J2 may not 

vary significantly as compared to other inclined orbits. In 

this conjunction the objective of the present work is to 

obtain an assessment of the influence of J2 on the 

formation flight orbit of twin satellites in near-Earth near-

Equatorial orbit utilizing linearized J2 modified Hill-

Clohessy-Wiltshire Equation, and at the same time 

developing an in-house computational code for further 

development to include other higher approximations. It is 

with such motivation that the present work review and 

reassess the influence of J2 perturbation on the formation 

flight of micro-satellites in Near Equatorial and Low 

Earth Orbits. 

After establishing the foundation of Linearized 

Dynamics of the baseline HCW equations in sections II to 

V systematically, the J2 Gravitational Perturbation Effects 

are incorporated to arrive at the Modified HCW Equation 

in VI and VII followed by validation, results and 

conclusions.   

II.  COORDINATE SYSTEMS AND TRANSFORMATIONS 
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The essential governing equation of spacecraft 

formation flight will be established by considering and 

identifying various coordinate systems. These coordinate 

systems can be defined by referring to Figure 1. The 

subscript N denotes a vector in the Earth Centered Inertial 

(ECI) frame, and a subscript O denotes a vector in the 

satellite-centered frame.  

 

  
Figure 1.  The ( r−θ−i) coordinate system used to describe the Chief and 
Deputy Satellite motion and the disturbance of J2in the local ( x - y - z ) 

coordinate system. 

 

The ( r−θ−i ) coordinate system (or Earth Centered 

Chief Satellite Orbital Plane coordinate system)  is used 

in describing the J2 disturbance in the local ( x - y - z ) 

coordinate system. The coordinate system elements r and 

the two Euler angles, θ and i, belong to the associated 

geometry for the transformation from the ECI frame to 

the ( r −θ − i) frame, utilizing the direction cosine matrix 

formed by the 3-1-3 Euler angle sets Ω , iand θ . These 

variables are known as the longitude of ascending node, 

the argument of latitude, and the angle of inclination, 

respectively. A similar direction cosine matrix (DCM) 

can be written in terms of the LVLH coordinate system in 

the ECI frame as expressed by (1) or (2):  

 

 
rX rY rZ

X Y Z

hX hY hZ

e e e

ON e e e

e e e

  

 
 


 
  

  (2) 

This is a direct rotation from ECI coordinates into the 

satellite-centered frame. Therefore, these two rotations 

are equivalent.  

III. DEVELOPMENT OF RELATIVE DYNAMICS 

LINEAR MODEL 

The equations of motion of the deputy spacecraft 

relative to the chief spacecraft is established following 

closely that of Djojodihardjo and Harithuddin [9], 

Alfriend et al [14], Djojodihardjo and Gunther [15]. 

Figure 2 exhibits the two spacecrafts orbiting the Earth. 

The inertial position vector of the chief is R, and that of 

the deputy is r. The position vector of the deputy relative 

to the chief is ρ, such that 

 r R ρ  or
d c r r ρ            (3) 

One of the assumptions that should be made at this 

stage is that the relative distance between chief and 

deputy is small compared to the magnitude of R, 

e.g. 1
R


 .   

Following Newton’s Gravitational Law, the equation 

of motion of an earth-orbiting body is. 

3
; r

r


  r r r 

 

3
;d d d d

d

r
r


  r r r   (4a) 

as well as 

3
; R

R


  R R R 

3
;c c c c

c

r
r


  r r r

 

              (4b) 

Here   is the standard gravitational constant of the 

earth, which is 3986km
3
/sec

2
. In what follows, all 

perturbation components (derived from propulsive force, 

J-perturbation, aerodynamics drag or third-body forces) 

will be ignored at the present stage. The vectors are all t-

dependent. The equation of motion for the deputy in the 

moving frame can be further elaborated by substituting   

(3) into (4) to obtain the equation of motion of the deputy 

satellite.  

Hence: 

 3


    


r R ρ R ρ

R ρ

                  (5) 

and, subsequently 

 3


   


ρ R R ρ

R ρ

   (6) 

 

 

 

 

 

 

 

 

 
Figure 2: Coordinate System for defining relative motion (the figure is 

synthesized from Djojodihardjo and Harithuddin [8] and Ginn [16]) 

   
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For circular orbit,
3R


  , which represents the 

angular rate of the circular orbit around the center of 

Earth in the orbital plane.   

Here R is the semi-major axis or radius of the circular 

orbit and ρ is the position vector of the deputy spacecraft 

in the relative (moving, orbiting) frame around the chief 

spacecraft. Accordingly: 

3

0 0
0

0 0 ; ;
0

R
x

y

z

R





 

 
  

     
        
     
        

   

ω R ρ  (7)    

For the right-hand side of (6), one can expand 
3

R ρ  in a Taylor series approximation. Taylor series 

expansion about  
3

0

,F






 R ρ R ρ  yields 

   

     

3
3

2

3

2

2 2 2 3 2 2

3 4 5 5 5 6 6 6

2

1 3 6 3 3 10 15 15
...

2 2 2 2

x x y z x xy xz

R R R R R R R R





      

       

        

R ρ R ρ R ρ

R R R ρ ρ ρ  

                                                                                (8) 

Substituting (8) into (6) one obtains 

 

2 2 2

3 4 5 5 5

3 2 2

6 6 6

1 3 6 3 3

2 2

10 15 15
..

2 2

x x y z

R R R R R

x xy xz

R R R



 

 
     

  
    
  

ρ R

R ρ



 

                 (9) 

Neglecting the terms with order higher than one, (13) 

becomes 

 
3 3 2

3

R R R

   
      

 

R
ρ R ρ R ρ R             (10) 

Substituting the equation of motion of the chief satellite 

3R


 R R into  (10), one finally obtains: 

 
3 2

3

R R

  
   

 
ρ ρ R ρ R                            (11) 

(11) yields the desired relation for  in the inertial 

frame I. One needs to represent in the relative frame, R, 

around the chief spacecraft.  One can write  in the 

inertial frame as,  

   2I R R R R       ρ ρ ω ρ ω ω ρ ω ρ                 (12) 

Thus,  in the relative frame, 

   2R I R R R       ρ ρ ω ρ ω ω ρ ω ρ                 (13) 

Substituting   (11) into   (17) and keeping only the 

linear terms, one obtain the kinematic relationship 

 

   

2

2

2

2

x y x

y x y z

   

    

   

    

ρ i

j k

  

  
           (14) 

Substituting (11) into (14) yields the equation of 

motion 

 2

2

3
x y z R x R

R
    

 
     

 
ρ i j k i               (15) 

Combining the kinematic relationship (14) with the 

equation of motion (15) yields 

 

   

2

2

2 3

2 0

x y x

y x z z

   

    

 

    

i

j k

 

  
(16) 

Hence, (16) gives the linearized Clohessy-Wiltshire 

equation: 
22 3 0x y x                 (17a) 

2 0y x               (17b) 

2 0z z               (17c) 

These equations refer to the moving frame of reference 

in which they were derived. This moving frame is 

sometimes called CW-frame or Hill’s frame. One 

advantage of the HCW equations is that the in-plane 

orbital motion (x and y directions) is uncoupled from 

the out-of-plane orbital motion (z direction). In the 

present HCW equations,  the following assumptions are 

made: 

1. Eccentricity of the chief orbit is zero (circular), 

e=0 

2. The angular rate is constant, =0  

3.  is constant (circular orbit) 

The homogeneous solution of the HCW equations 

derivation is carried out as follows. Define 

 
T

x y z   X and  
T

x y z   V    .  A 

subscript 0 denotes the initial condition. Then the solution 

of the linearized HCW equations can be represented in 

the following matrix form: 

     0 0XX XVt     X X V             (18) 

where,  

4 3cos 0 0

6sin 6 1 0

0 0 cos

XX

t

t t

t



 



 
 

  
 
  

; 

       (19)       

 

 

sin / 2 1 cos 0

2 1 cos / 4sin / 3 0

0 0 sin /

XV

t t

t t t

t

  

   

 

 
 

     
  

 

and, 

     0 0VX VVt     V X V              (20) 

where, 

 

3 sin 0 0

6 1 cos 0 0

0 0 sin

VX

t

t

t

 

 

 

 
 

  
 
  

 :  

                  (21) 

 cos 2 1 cos 0

2sin 3 4cos 0

0 0 cos

VV

t t

t t

t

 

 



 
 

     
 
 
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(18)-(21) then describe the homogeneous solution of the 

Hill-Clohessy-Wiltshire (HCW) equation, which 

determines the position of the deputy spacecraft  relative 

to the chief spacecraft as a function of t subject to initial 

conditions X0 and V0. 

IV. BASELINE HILL-CLOHESSY-WILTSHIRE 

EQUATION 

For a point mass or uniformly distributed sphere, the 

gravitational potential is 
14 3 23.986005 10 /eGM m s             (22) 

which is the first term of the more general Earth’s 

gravitational potential. If J2 is included, we have 

(Djojodihardjo [12], Alfriend et al [14], Ginn 

[16],Anderson [17], and Schweighart [18]) 
2

22

3

3 1
cos

2 2

eR J
U




 

 
    

  (23) 

Baseline Hill-Clohessy Wiltshire Equations, for 

circular orbit around the Earth as the central body, 

assumed the Earth as point mass centered at its center of 

mass and the center of the orbit. 

The equations of motion in the chief LVLH frame. 
2

2

2
2 3 0

d x dy
x

dt dt
      (24a) 

2

2
2 0

d y dx

dt dt
     (24b) 

2
2

2
0

d z
z

dt
      (24c) 

which is also known as the unperturbed or baseline HCW 

Equations. The angular velocity  is given by 

 
3 3

G M m

r r





 

 

 (25)

  
The out-of-plane motion is modeled as a harmonic 

oscillator, where the in-plane motion is described as 

coupled harmonic oscillators. These second-order 

differential equations have the general solutions 

   cos offx t A nt x  
  

(26a) 

   
3

2 sin
2

off offy t A nt nx t y    

 
(26b)    cosz t B nt  

 

 
(26c) 

whereA, α, xoff , yoff ,B and β are the six integral constants. 

The velocities are found as the time derivatives of (30a,b 

and c). In order to produce bounded relative motion, the 

radial offset term must be equal to zero to eliminate the 

secular growth present in the along-track direction. 

Setting the in-track offset term to zero, the bounded 

equations now have the form given by (26a,b and c). For 

the z direction, integration of:    0 sinz t B t   

   (27) 

yields: 

      0cosz t B nt D     (28) 

Following Djojodihardjo and Harithuddin [9], the 

analytical solutions of the homogeneous HCW equations 

are obtained as follows. Define  
T

x y zX and 

 
T

x y zV    . A subscript 0 denotes the initial 

condition. Then the solution of the linearized Clohessy-

Wiltshire (HCW) equations can be represented in the 

following matrix form:   

         0 0XX XVt t t t t  X X V               (29a) 

         0 0VX VVt t t t t  V X V               (29b) 

whereXX(t), XV(t), VX(t) and VV(t) are state-

transition matrices defined as in (19) - (21). The 

homogeneous solutions of the HCW equation determine 

the position and the velocity of the deputy spacecraft 

relative to the chief spacecraft as a function of t subject to 

initial conditions X0 and V0.   

V. RELATIVE BOUNDED MOTION 

In formation flying, the motion of deputy satellite must 

remain bounded with respect to the chief satellite such 

that it experiences no secular drift and the formation 

configuration is maintained.  One needs to find the 

condition such that the solutions of the Clohessy-

Wiltshire equations are bounded [9][16]. (26a) and (26b) 

are coupled and they can be solved in parallel. Integrating  

(26b) yields an expression for y (t) : 

    0 02 2     y t x t x y               (30) 

If one integrates (30) from 0 to t, one finds terms that 

grow unboundedly over time, namely the terms 

 02x t and  0
y t . However,  y t can be made 

bounded and periodic given the condition 

0 02 0x y                    (31) 

Then, the solution for the in plane motion of the deputy 

satellite is:  

   0 sinx t A t                               (32a) 

   0 02 cosy t A t C                  (32b) 

whereA0 , phase angle α and integration constant 

C0depend on the initial conditions. The out-of-plane 

motion is decoupled from the in-plane motion and its 

solution takes on the form of a simple harmonic oscillator: 

     
0
sinz t B t                (32c) 

where the amplitude B0 and the phase angle   are 

constants which depend on the initial conditions. The out-

of-plane motion is periodic and bounded with respect to 

the chief satellite. 
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Figure 3.(a) Sketch of projected circular orbit in inertial frame; (b)-(d) 
Illustration of the relative position of deputy satellite in relative frame 

centered on the chief satellite. 

 

The solutions (32) define a family of bounded 

trajectories for the deputy satellite with periodic motion 

in the relative frame under the assumptions of the 

baseline HCW-equations. The motion of the deputy 

satellite, if projected onto the y-z plane, follows an ellipse 

of semi-major axis 2A0 and semi-minor axis A0. Figures 3 

(b) to (d) exhibit the geometry of the relative position of 

the deputy satellite in a relative frame centered on the 

chief satellite, while Figs. 3(a) illustrates the motion of 

the deputy satellite with respect to the chief satellite as a 

projected circular orbit in inertial frame. 

VI. LINEARIZATION OF THE INFULENCE OF J2 ON THE 

GRAVITATIONAL POTENTIAL 

The main gravitational perturbation effect is due to J2, 

the equatorial bulge term. The J2 term changes the orbit 

period, a drift in perigee, a nodal precession rate and 

periodic variations in all the elements. In what follows, 

the right ascension rate which is equal to [14] 
2

2

3
cos

2

ER
J n i

p

 
    

 



 

(33) 

is considered. Any non-spherical body can be modeled 

using spherical harmonics, which can then be 

differentiated into three types of harmonics, i.e. the zonal, 

sectorial, and tesseral ones. For the Earth, J2represents the 

zonal harmonic, i.e. the equatorial bulge and is the largest 

coefficient of the Earth’s gravitational potential.  

The difference in equatorial and polar radii is mainly due 

to this bulge, which is about 21km. Various reference 

frames that are required to describe the motion of a 

satellite in orbit around the Earth. These include the 

geometry used to describe the potential due to J2.  For an 

orbit around the Earth of about 800 km altitude, the J2 

effect is much larger in comparison with other 

perturbations such as atmospheric drag, solar radiation 

pressure and electro-magnetic effects [1] [14][19]. 

6.1. Adding the J2 Perturbation 

Considering the Earth as a spherical central body of 

uniform density in the earlier section, the two-body 

equations of motion can be written in a simple form. 

However, the Earth is a non-spherical mass of finite size 

and imposes a gravitational potential due to an aspherical 

central body.  More accurate two-body equations of 

motion can be made by considering and determining the 

gravitational potential due to an aspherical central body, 

using a coordinate system depicted in Figure 4 to describe 

the aspherical gravitational potential. The potential that 

describes an aspherical central body is given by (Vinti 

[11], Djojodihardjo [12], Djojodihardjo  andKadarusman 

[13], Anderson [17], Tapley et al [20]): 

 

whereJl, Cl,m, and ,Sl,mare gravitational coefficients and 

Ris the equatorial radius of the Earth. The first term is 

the two-body potential, whereas the second term is the 

potential due to zonal harmonics. 

An aspherical body which only deviates from a perfect 

sphere due to zonal harmonics is axially symmetric about 

the Z-axis. The third term represents two other harmonics. 

The sectorial harmonics, wherel= m, represent bands of 

longitude, and tesseral harmonics, where l≠ m≠ 0 , 

represent tile-like regions of the Earth. 

The J2coefficient is about 1000 times larger than the 

next largest aspherical coefficient, and is therefore very 

important when describing the motion of a satellite 

around the Earth. The potential due to the J2disturbance 

can be obtained from Vinti [11] as 

 
2

2 2 cos
satzonal gc

R
U J P

r r


        

 (35a) 

which can further be reduced to 
2

22

3

3 1
cos

2 2

eR J
U




 

 
    

   

 (35b) 

where  2 cos
satgcP  

 
is the associated Legendre 

 
Figure 4. Geometry used to derive the gravitational potential  

(a) (b) 

(c) (d) 
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2 2 1
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l l
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l l m

R R
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
   

 
 

  

                      
   
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polynomial of J2 ; the second zonal gravitational 

coefficient according to the JGM -2 model [16][20] has 

been calculated as J2= 1.082626925638815×10−3. The 

co-latitude may be written as  

  
2

2

2
sin 1

satgc

Z

r
                  (36) 

The acceleration due to J2in the ECI frame is then 

calculated as the gradient of the potential 

2
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    
  

           
(37)

 

The chief and deputy equations of motion can be 

rewritten in the inertial frame as 

23 cc c

c

r r J
r


      (38) 

23 dd d

d

r r J
r


      (39) 

The acceleration due to J2in the LVLH frame may be 

calculated from the gradient in the r and Z directions: 

2 2

2

3
2

2 4 6 5

3 15 3
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U e e

r z

z z
J R e e
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 
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(40) 

where the Z component may be expressed in the LVLH 

frame as [5][16][18] 
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        (41) 

Substituting this equation into (40), one obtained the 

acceleration due to J2 to be 
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or
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  (42b) 

in Earth-Centered Inertial (ECI) frame of reference. 

The chief and deputy equations of motion in the 

inertial frame due to J2 in the ECI frame is given by (38) 

and (39). The linearized equations of motion for the chief 

and deputy satellites in ECI is given by
 

 
3 2

3

R R
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3
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 
ρ ρ ρ (43)                                                            

The inertial relative position and velocity is defined as 

the position and velocity of the deputy relative to the 

chief.  
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Figure 5. Overall methodology following the present approach 

Hence the components in ECI Frame of reference is 

given by 

sin cos sin cos

cos sin ; cos sin

sin sin sin sin
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c c d d d

c d d d

r i r i
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r r         (48)                       

Similar to unperturbed HCW case, in LVLH, the 

solution of the equations of motion can be represented in 

the following matrix form: 
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      0 0XX XVt     X X V              (49) 

where appropriate terms like below have to be formulated, 

and       0 0VX VVt     V X V               (50) 

With the present baseline formulation, the approach 

follows closely a combination of Ginn's [16] and 

Schweighart's [18] linearized approach, the detail of 

which is given by Djojodihardjo and Tee [21][22]. 

Computational procedure and code are then developed 

following the scheme depicted in Figure 5.   

VII. LINEARIZED J2 MODIFIED HCW EQUATIONS 

Proceeding with further algebraic manipulations, the 

governing equations for the calculation of the influence 

of J2 on the linearized HCW Orbit are obtained and 

summarized below [16] [18][21][22]. 
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where

 

2
2

2 23  J

c

R
A n J

r
                 (54) 

These equations are incorporated in the in-house 

MATLAB computational routine. 

VIII. EXAMPLES AND VALIDATION 

A. Validation of Clohessy-Wiltshire Model 

 

 

 

 

 

 

Figure 6. Relative trajectory comparison for ρ= 1 km, 10 km, 25 km, 

and 50 km with e=0 and a= 7225km. 

 

To demonstrate the relative satellite motion modeled 

by the Clohessy-Wiltshire equations, the projected 

circular orbit trajectory is simulated via MATLAB and 

worked out in [9][15] are shown partially for 

completeness and comprehensive impression, as 

exemplified in Figures 6 and 7. The trajectory follows the 

initial conditions defined by the set of solutions presented 

in Table 1. 
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TABLE I.   
CHIEF'S ORBITAL ELEMENTS AND DEPUTY'S INITIAL CONDITIONS WITH 

RESPECT TO CHIEF'S 

 

Chief Satellite 

Altitude, h (km) 847 

Eccentricity, e 0 

Orbit Inclination, I (deg) 10
0
 

Right Ascension of the Ascending Node, Ω (deg) 0
0
 

Argument of Perigee ω (deg) 0
0
 

Mean Anomaly at Epoch, M (deg) 
0

0
 

Deputy Satellite Starting Condition 

(Chief-centered Frame) 

x0(km) 
0.0 

y0 (km) 
5.0 

z0 (km) 
0.0 

vx0 (km/s) 
0.5785∙10

-3
 

vy0 (km/s) 
0.0 

vz0 (km/s) 
1.1570∙10

-3
 

i (deg) 
10 

θ(deg) 
nt 
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Figure 7: Clohessy-Wiltshire model error for ρ= 1 km, 5 km, 10 km, 25 

km, and 50 km with e=0 and a= 7225km. 

B.  Comparison and Validation of Baseline Clohessy-

Wiltshire Model of Twin-Satellite Orbits with J2-

Perturbed Ones 

To demonstrate the influence of J2 on the linearized 

(HCW) orbit of the Twin Satellite Formation Flying 

Orbits, the J2 perturbed linearized HCW equations orbits 

are compared with the baseline ones. The initial condition 

are those given in Table 1. The results are exhibited in 

Figs. 8 to 12. 

 
Figure 8: Comparison of the X,Y and Z values, respectively, of Deputy 

Satellite orbit around the Chief Satellite as the solution between baseline 
HCW, linearly modified HCW Equation and Schweighart’sresults (the 

latter two incorporate the effect of  J2). 

 
Figure 9. Comparison of the Deputy Satellite orbital radius around the 

Chief Satellite as the solution of Clohessy-Wiltshire Equation (without 

J2) and incorporating the influence of J2, using linearized modified 

Clohessy-Wiltshire Equation.  

 
Figure 10. (a) The difference between the radius of the orbit of the 

Deputy Satellite around the Chief Satellite as the solution of the original 

linearized HCW Equation (without J2) and that incorporating the 
influence of J2, using linearized J2 modified HCW Equation 

 

 
Figure 11. Comparison of Baseline Ground-Track of the Deputy and 

Chief Satellites orbits as the solution of baseline HCWand the Linearly 

Modified HCW equation which incorporate the influence of J2. 

 

 
Figure 12. Comparison of Deputy Satellite orbit around the Chief 

Satellite as the solution of baseline Clohessy-Wiltshire Equations 

(without J2) and Linearly Modified HCW equations which incorporate 
the influence of J. 
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The results show that the equations derived in this 

work have close similarity with the ones derived by 

Schweighart, although quantitatively there are differences. 

It should be noted that Schweighart’s solutions originate 

from different J2 linearization compared to the present 

work. Such difference may be attributed to the notion that 

Schweighart’s equations do not include the drift of the 

ascending node of a satellite under the influence of the J2 

disturbance. 

 
Figure 12: Comparison of the Deputy Satellite orbital radius around the 

Chief Satellite as the solution of the baseline Clohessy-Wiltshire 

Equations, the linearized J2 modified HCW Equations and similar 

solution obtained by Schweighart [17]. 

IX.  SUMMARY OF RESEARCH RESULTS 

The work carried out in the present paper 

issummarized in Table 2. 

X. CONCLUSIONS 

Linearized Hill-Clohessy-Wiltshire equations have 

been utilized in developing modified form to take into 

account the influence of J2 on the orbits of twin 

spacecraft in formation flight in near-Earth orbits. For 

Near Equatorial orbits the variation of J2 is less apparent. 

Various relevant approaches and recent work on this 

issue have been synthesized into a novel and simplified 

approach, capitalizing on the balance between linearized 

approach and expected fidelity of the obtained solution, 

as stipulated by many earlier work. Judging from the 

accuracy estimation of simplified linearized approach, the 

exhibited computational results were obtained using J2 

linearized HCW equation. The original (baseline) 

linearized HCW approach and linearized J2-modified 

HCW equation also exhibit the merit of simple analysis, 

which could be extended to incorporate other parameters. 

The relevance of parametric study as a preliminary step 

towards optimization efforts has been demonstrated in the 

presentation of the results. The computation that has been 

performed using in-house developed MATLAB program. 

As a particular example, for low earth orbit (i.e. 847 km), 

the error is about 0.25km from the desired relative 

position in the LVLH or Hill frame after 16.67 hours. 
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