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Abstract—Federated Learning (FL) is an enabling technology 

for Machine Learning in scenarios in which it is impossible, 

for privacy and/or regulatory reasons, to analyze data in a 

centralized manner. FL envisages that distributed clients 

cooperate to learn a model without any data exchange, in 

favor of a model averaging procedure that is coordinated by 

a server. In this work, we present the Adaptive Federated 

Learning (AdaFed) algorithm, that extends the original 

Federated Averaging algorithm by: (i) dynamically 

weighting the local models, based on their performance, for 

the averaging procedure; (ii) adapting the loss function at 

every communication round depending on the training 

behavior. This work specializes AdaFed for both 

classification and regression tasks, and reports several 

validation tests on benchmarking dataset, showing its 

enhanced robustness against unbalanced data distributions 

and adversarial clients. 

Index Terms—federated learning, distributed learning 

systems, adaptive learning, deep neural networks 

I. INTRODUCTION

Federated Learning (FL) is a distributed learning 

solution to address Machine Learning (ML) problems 

without the need of collecting the available data in a single 

data center. FL finds application in scenarios where data 

are distributed across a multitude of sources that, due to 

privacy or communication constraints, cannot share it with 

each other or with a centralised entity. The need of 

analysing data locally becomes paramount when dealing 

with personal data (e.g., collected by smartphones) or 

sensitive information (e.g., business data). 

Hence, heavily regulated fields such as healthcare [1], 

and connecting the fragmented data sources while 

preserving privacy [2], could benefit from the application 

of FL. For example, in the medical field, the use of deep 

learning methodologies in the identification of complex 

models, whose potential is emphasized in the literature 

with numerous applications in radiology, pathology, and 

genomics [3], is severely limited by both the inability of 

individual institutions to have sufficiently large and 

diverse datasets, and difficulties related to data privacy and 

ownership, in the case of multi-institutional collaborations 

based on centrally-share patient data, especially in 

international collaborations, and are also not suitable for 

cases where there are the number of institutions is large. 

As a result, the knowledge generated worldwide remains 

distributed among multiple institutions, increasing the 

need to look for alternative approaches: because of its 

privacy preserving characteristics, FL represents a 

collaborative learning approach enabling multi-

institutional collaborative learning tasks for intelligent 

healthcare applications. In other words, given a network of 

hospitals, FL makes it possible to share the knowledge 

gained from the model of each hospital to improve that of 

the whole federation, without having to collect data from 

all hospitals in a single server. This solution can be made 

GDPR compliant. 

In this work, we propose the Adaptive Federated 

Learning algorithm, AdaFed, which, although designed to 

extend the formulation and results of the original FL 

algorithm Federated Averaging (FedAvg), the concepts 

behind its innovations are independent of the specific 

implementation and may be seamlessly translated to other 

algorithms such as FedProx [4]. Specifically, in FL the 

server’s model is updated at every communication round 

by averaging the models of the federated clients, trained 

on their locally available data, while AdaFed proposes a 

two-step procedure to improve both the model averaging 

and the local training processes by i) dynamically 

weighting the client models contributions to the federation 

based on their performance, and ii) adapting the federated 

loss function depending the global model performance at 

each communication round. 

The evaluation of AdaFed in terms of versatility, 

performance improvements and capability of addressing 

new challenging scenarios is illustrated by comparison 

with FedAvg on different tasks involving several different 

data-sets. 

The rest of this paper reports in Section II a brief state-

of-the-art, while in Section III the AdaFed algorithm is 

presented for both classification and regression tasks. 
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Numerical tests are used for validation of the algorithm 

and reported in Section IV, and, finally, Section V 

highlights possible future works and concludes the paper. 

II. RELATED WORKS AND MAIN CONTRIBUTIONS 

The concept of FL was introduced in 2016 by the 

authors of [7] and, in its original formulation [6], [7], it was 

presented as a solution to specifically address the 

collaboration among a group of smartphones by means of 

an iterative model-averaging procedure. According to 

which, local model updates, independently computed by 

the smartphones, were gathered and averaged by a 

centralised server that then propagated the updated global 

model in the network, as depicted in Fig. 1. 

 

Figure 1. Sketch of the architecture for "Federated Learning" [5], as 
originally envisaged by the FedAvg algorithm presented in [6].  

As examined within the later studies [5], [8], [9], since 

its introduction, FL was extended to different architectures 

and uses cases, with several works focusing on improving 

its privacy preserving and security related features [10]-

[13] to prevent direct or indirect data leakage [14], and 

reducing communication costs related to the distributed 

training [15]-[17]. FL found application in several 

domains, ranging from smartphones/Internet of Things 

tasks such as Natural Language Processing (NLP) [18]-

[20], image analysis [21], [22] and distributed sensing and 

computing [9], [23], to scenarios where organisations and 

institutions cooperate to achieve better models to analyse 

complex and highly confidential data, typical of the 

healthcare domain [24]-[26]. Contrary to federated 

database systems, where data can be freely distributed by 

a central entity, the typical scenario for a FL application is 

characterised by the need to analyse data partitioned as 

given, implying that FL algorithms need to be able to cope 

with data that are: 

• Non-IID and imbalanced, as the geographical 

topology of the federated organisations or data 

sources may significantly affect the data 

distribution and collecting procedures; 

• Extremely distributed, namely when the quantity of 

individual data samples is lower than the number of 

connected devices.  

The fundamental idea at the basis of this work is to 

assign to the various clients a different weight for the 

averaging, based on their contribution, in terms of 

performance and attained knowledge, to the federation. 

Similar concepts have been explored by other recent works, 

such as done by the authors of the FOCUS algorithm [27], 

that designed a procedure to determine a weighting 

strategy for the various clients that is based on a so-called 

“credibility score”. Such score was designed to reduce the 

sensitivity of the model trained by the federation to un-

even levels of labelling quality of the clients’ data. This 

allows to increase the robustness of the training algorithm 

to both different data harvesting/collection procedures and 

also human factors. The labelling quality is inferred by the 

FOCUS algorithm by correlating the performance of the 

averaged model on the distributed datasets with the 

performance of the clients’ models on the server dataset-, 

whose labelling quality is assumed to be high). The 

AdaFed algorithm was not specifically designed to provide 

robustness to labelling quality disparity, but instead it 

focuses on evaluating the quality of the clients’ models and 

their consequent contribution to the federation knowledge 

discovery process. In fact, AdaFed allows FL solutions to 

cope with extremely unbalanced scenarios with un-even 

data distributions and, also, allows to deal with the 

presence of compromised, or even malicious, clients.  

The second main contribution AdaFed is the inclusion 

of an adaptive loss functions [28]-[31] into the federated 

training process. Advanced loss functions are commonly 

found in several complex ML applications, such as 

computer vision [28], [31], [32] and as multi-objective 

learning, where Pareto-like optimality [29] is sought by 

minimizing multiple competing objectives.  

Having the loss function evolve during and adapt during 

the training process, depending on the model performance 

evaluated during the training itself, opens up some 

interesting and still not completely investigated 

possibilities. Due to the iterative nature of the FL process, 

it is seamless to update the loss function at the end of each 

communication round (i.e., immediately after the model 

averaging). 

The main innovations of the present work are: 

1) The proposal of a new federated learning algorithm, 

namely AdaFed, that features two functionalities to 

improve the training process: 

a) The dynamic weighting of the clients’ 

models in the model averaging procedure, 

based on their performance. 

b) The introduction of an adaptive loss 

function in the FL setting. 

2) the validation of AdaFed on multiple scenarios, 

involving convolutional neural networks, transfer 

learning and compromised/malicious federations. 

III. ADAFED: ADAPTIVE FEDERATED LEARNING 

The AdaFed algorithm is reported in the Algorithm 1 

table, where the two main innovations of the algorithm are 

highlighted. Namely, the key functionalities introduced by 

AdaFed are: 

1) Weighted Model Averaging (lines 4-9): When the 

server carries-out the model averaging procedure 

and it gathers the clients’ models, a preliminary 

evaluation of all the models is conducted on a 

dataset available to the server. According to the 

models’ performances, a different weight is given 
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to each model for the model averaging, so that 

better performing models are given more focus.  

Algorithm 1. AdaFed: Performance-Based Adaptive Federated 

Learning algorithm 

1: SERVER’S UPDATE: 

2: for each round t  = 1, 2, …, R do 

3:        ClientsUpdate 

4:        for each client i = 1, 2, …, K do 

5:               receive the client’s model 𝑤𝑖 

6:               evaluate 𝑤𝑖 on the server test set 

7:               use the evaluation to determine the weight 𝑝𝑖 

8:        end for 

9:        update the server’s model 𝑤𝑆  ←  
∑ 𝑤𝑖𝑝𝑖

𝑛𝑐
𝑖=1

∑ 𝑝𝑖
𝑛𝑐
𝑖=1

 

10:      evaluate its performance 𝑝𝑆 on the server test set 

11:      adapt the loss function 𝑙 depending on 𝑝𝑆 

12:      propagate 𝑤𝑆 and 𝑙 to the clients 

13: end for 

 

14: ClientsUpdate: 

15: for each client i = 1, 2, …, K do 

16:        𝑤𝑖  ← 𝑤𝑆 

17:        for each local epoch j  = 1, 2, …, E do 

18:               for each mini-batch b of size B do 

19:                      𝑤𝑖  ← 𝑤𝑖 − 𝜂∇𝑙(𝑤, 𝑏) 

20:               end for 

21:        end for 

22: return 𝑤𝑖 to server 

23: end for 

 

The performance can be evaluated, generally 

speaking, with any indicator that captures the 

quality of the solution proposed by the model for 

the given task (e.g., accuracy for classification 

tasks). 

2) Adaptive Loss (lines 10-12): the server sends to the 

clients the averaged model, as in standard FL 

approaches, and sets a new loss function that was 

updated based on the performance archived by the 

new averaged model, according to a use-case 

dependant indicator (e.g., update class weights for 

classification tasks depending on recall). 

For the sake of clarity, Algorithm 1 is reported using a 

similar syntax to the one used for FedAvg in [6]. In general, 

the privacy enhancing characteristics and features 

developed for more recent and specialized FL algorithms 

may be included in the AdaFed formulation, provided that 

they comply with the standard iterative model averaging 

structure of the original FedAvg. 

As in [27], AdaFed estimates the contribution to the 

federation of the various clients in order to determine their 

relative weights for the model averaging procedure.  

The main limitation of AdaFed is that, for such an 

evaluation, it requires the availability of a test that is 

representative for the considered task.  

The main advantages offered by AdaFed are that, by 

combining the dynamic weighted model averaging 

procedure with an adaptive loss function, it makes so: i) 

more focus is given to better performing clients, while 

reducing or preventing the negative effects caused by 

compromised and malicious clients and ii) more attention 

is given to data samples and/or features required to 

improve the model performance, such as in the case of the 

most rare/harder to discern labels and characteristics in 

classification tasks. 

A. Application: AdaFed for Classification Tasks 

Multi-class classification is a typical example found in 

computer vision and in general Machine Learning 

applications. The most common loss function for this kind 

of problems is the so-called categorical cross-entropy: 

𝑙(𝑋, 𝑌) = −
1

𝑀
∑ ∑ 𝑦𝑚

𝑐 log(𝑦̂𝑚
𝑐 )

𝑀

𝑚=1

𝐶

𝑐=1

(1) 

where 𝑥𝑚 ∈ 𝑋 and 𝑦𝑚 ∈ 𝑌 are the m-th data sample and 

label, respectively, in the dataset (𝑋, 𝑌) , M and C are 

respectively the number of data samples and classes, 𝑦𝑚
𝑐  

and 𝑦𝑚
𝑐  denote the c-th component of the vectors 𝑦𝑚 and 

𝑦̂𝑚 and are respectively the true and predicted labels for 

the sample m regarding class c. Note that 𝑦̂𝑚
𝑐  is typically 

produced, for single-label problems, by a deep neural 

network with a softmax output activation function and can 

be interpreted as the probability of correctness for the 

given label.  

Note that, in the standard formulation, the categorical 

cross-entropy does not compensate for imbalanced class 

distributions, that in turn characterize several FL scenarios. 

In order to ease the learning when dealing with unbalanced 

data distributions is to utilise a weighted categorical cross-

entropy, that is: 

𝑙(𝑋, 𝑌) =  −
1

𝑀
∑ ∑ 𝜅𝑐𝑦𝑚

𝑐 log(𝑦̂𝑚
𝑐 )

𝑀

𝑚=1

𝐶

𝑐=1

(2) 

where 𝜅𝑐  is a class-dependent weight. Regarding such 

class weights, works such as [33] set them as proportional 

to the inverse class numerosity available in the training set, 

while works such as [34] employ a complex weight that is 

derived from the class recognition complexity. 

In the same direction of [28], this paper does not 

consider any rule-based policy to set the loss parameters, 

as it is commonly done by most approaches in the literature, 

and instead [28] dynamically modifies the loss 

structure/parameters during the training.  

Following the approach of [28], [33], [34], we choose 

for our testing the class dependent weight 𝜅𝑐  to be 

inversely proportional to the performance 𝑝𝑆 obtained by 

the server model on the server test set with respect to its 

corresponding class, expressed by means of its F1
c-score, 

e.g., 𝜅𝑐 = 1/(F1
c + ϵ), where 𝜖 < 1 is a design parameter 
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to limit 𝜅𝑐. Note that this choice is however arbitrary as 

other metrics to evaluate 𝑝𝑆  can be chosen, as shown in 

Section IV. The rationale behind this adaptive loss logic is 

to encourage the clients to focus, during their training 

phase, on classes which are misclassified by the global 

model.  

Referring to Algorithm 1, this choice translates in 

having 𝑝𝑆 = {F1
c, for 𝑐 = 1, … , 𝐶} (line 10) and updating 

the loss function 𝑙 with the new weights 𝜅𝑐 derived from 

the F1
c-scores (line 11).  

The same idea is used in the Weighted Model Average 

step. Note that, in principle, the weight 𝑝𝑖  of the i-th client 

can be computed via the performance of its model over the 

server test set with a different metric than the one used for 

the Adaptive Loss step, so instead of the F1-score one may 

utilise for example the model accuracy or the diagnostic 

odds ratio, depending on the specific use case. 

B. Application 2: AdaFed for Regression Tasks 

As introduced, AdaFed can be seamlessly applied to 

regression tasks provided some awareness on the 

considered task and overall FL design. For example, in 

regression problems one may have that an application-

dependent metric, not directly related to the loss, captures 

the performance of the model at solving the considered 

task. For instance, in our example (see Simulation 3), we 

have that the task objective is to estimate the number of 

cells in a given microscope photo, so we will consider the 

mean absolute percentage error on the counting of cells, 

whereas the models’ loss will be related to the mean 

squared error between a target image and the image 

generated by the deep neural network.  

Furthermore, it is in principle possible to consider a loss 

function with a variable structure such as the one proposed 

in [28] and adapt its hyper parameters at each 

communication round, depending on the server’s model 

performance evaluated on an ad-hoc dataset.  

C. Limitations 

The main limitation of the proposed framework is the 

availability of a server test set that is qualitatively and 

quantitatively representative of the learning task. While its 

numerosity is not required to be particularly high, on 

certain scenarios it may not be possible to assume the 

existence of such a set. A possible solution would be to 

share the local models in the network and collect their 

performance on the distributed test set available to the 

various clients. By properly averaging the collected 

performance it is then possible to determine the various 

performance weights 𝑝𝑖  and obtain the updated global 

model. This procedure may be iterated again for adapting 

the loss function 𝑙. Note that this approach, besides adding 

a significant communication overhead, may be sensitive to 

adversarial attacks as a level of trust in the evaluations of 

the clients is required if no adversary detection strategy is 

implemented. An alternative approach could be imposing 

to every member of the federation to share a small portion 

of their data, selected randomly, so that the resulting 

dataset may be representative for all the data available to 

the federation. 

IV. EXPERIMENTS 

In this section, AdaFed is tested and compared to 

FedAvg in different scenarios. This section expands the 

results reported in [35] by considering more datasets and 

scenarios. The rationale behind all of the conducted tests 

is to evaluate how AdaFed performs in challenging 

settings to better capture the contribution of its innovative 

features. For this reason, AdaFed will be compared with 

FedAvg, as it is the baseline for FL solutions. In the 

remainder of the section, for the sake of presentation 

clarity, we will assume all the clients to send their model 

to the server at each communication round. 

A. Simulation 1 - MNIST and OARF Classification 

Tasks 

The first simulation considered deals with the MNIST 

[36] dataset. Such a simple dataset allows to better 

evaluate the effect of each of the proposed enhancements 

individually, provided AdaFed is deployed on an ad-hoc 

scenario.  

We recall that the MNIST dataset consists in a set of 

60k+10k labelled images of handwritten digits (from 0 to 

9), and represents on of the most common baselines for 

classification tasks.  

Simulation 1.A will focus on the Weighted Model 

Averaging step, while Simulation 1.B was designed to 

evaluate the Adaptive Loss functionality and, finally, 

Simulation 1.C validates the robustness AdaFed in the 

presence of adversarial clients.  

In all three of such simulations, we set the parameters of 

AdaFed (refer to Algorithm 1) as 𝐸 = 5  (number of 

epochs in the clients’ update), 𝐵 = 100 (batch size) and 

𝑅 = 20 (number of communication rounds). The server 

test set is composed by the whole MNIST test set, whereas 

clients’ data are distributed as described in the following 

sections.  

1) Simulation 1.A (MNIST) - Validation of weighted 

model averaging 

For this simulation, we consider 𝐾 = 6  clients, with 

five of them having access to 5500 samples of only two 

digits. The only exception is related to simulating the 

scarcity of samples for classes 0 and 5, for which we used 

only 100 and 200 samples respectively. The last client was 

instead assumed to have a small amount of data (500 

samples) from each of the 10 classes.  

For the training we used the standard architecture 

provided by Keras [37], that is composed by a stack of two 

convolutional layers and two fully-connected layers. The 

performance weight 𝑝𝑖  of the i-th client for AdaFed is 

computed as its accuracy times the number of its available 

data samples, i.e., 𝑝𝑖 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 × #𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑑𝑎𝑡𝑎𝑖. 

Fig. 2 shows that AdaFed starts with a higher accuracy 

from the very first communication round, as the weighted 

model averaging reduces the contribution of models that 

overfitted on the local data, thus converging faster than 

FedAvg. The presence of a client (client 6) that has access 

to data from all classes, even if in limited quantities, allows 

it to attain better a performance from the very start of the 

training when compared to the other clients that have only 

data from two classes at their disposal. Consequently, 
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AdaFed, thanks to its adaptive weighting strategy, gives 

more focus and weight to client 6 partially avoiding the 

negative effects caused by the other clients’ data 

distributions. This advantage carries out during the entirety 

of the training, with FedAvg catching up only after over 12 

communication rounds. 

 

Figure 2. Simulation 1.A (MNIST): Evolution of the server model 

accuracy over communication rounds, evaluated on the separated test 
set of the server. 

2) Simulation 1.B (MNIST) - Validation of adaptive 

loss function 

In order to evaluate the contribution of the adapting loss 

function, we consider now a scenario with data that is now 

distributed in a less uniform way, as reported in Table I.  

TABLE I.  SIMULATION 1.B - DATA DISTRIBUTION AMONG CLIENTS 

 
 

We consider a weighted categorical cross-entropy loss, 

that is updated at the end of the various communication 

rounds depending on the F1 -scores attained by the 

averaged model for the ten classes. In particular, the 

weights 𝜅𝑐 are set to be equal to 1/(F1
c + 0.1). The logic 

behind this choice is to increase (10 times) the impact on 

the loss value for samples that belong to the commonly 

miss-classified (i.e., F1
c → 0 ) classes, whereas better 

recognised classes (i.e., F1
c → 0) are given lower focus. 

Fig. 3 reports the accuracy, over the communication 

rounds, of FedAvg against two different AdaFed 

federations, one implementing both the weighted 

averaging and the adaptive loss procedure, and another that 

only implements the weighted model averaging as in the 

previous simulation, with 𝑝𝑖 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖. 

 

Figure 3. Simulation 1.B (MNIST): Evolution of the server model 

accuracy over communication rounds, evaluated on the separated test 
set of the server. 

AdaFed is able to offset FedAvg by about 3% in both of 

its implementations, with the one including the adaptive 

loss converging faster than the other. Fig. 4 reports the 

Macro F1-scores (i.e., the average of all the F1
c-scores) and 

it shows that the adaptive loss implementation of AdaFed 

is able to better discern classes for which limited samples 

are available. This performance gap is highlighted in Fig. 

5, where it can be seen that the F1
c-scores increase more 

uniformly and faster when the adaptive loss is 

implemented. 

 

Figure 4. Simulation 1.B (MNIST): Evolution of the server model 

macro F1-score over communication rounds, evaluated on the separated 

test set of the server. 

 

Figure 5. Simulation 1.B (MNIST): Evolution of the server model F1-

scores over communication rounds, evaluated on the separated test set 
of the server. 

3) Simulation 1.C (MNIST) - Robustness to 

adversarial actors 

Considering the data distribution of the previous 

simulation, we now focus on the resiliency of an AdaFed 

federation against malicious clients that aim at 

compromising the federation training. To this end, we 

consider two additional clients, 7 and 8 (i.e., 𝐾 = 8), that 

share the same data distribution of clients 3 and 4 but with 

incorrect labeling for respectively 50% and 100% of their 

samples. Additionally, the new clients do not use in their 

training the averaged model received from the server and 

instead maintain their local model over the entire training. 

Fig. 6 and Fig. 7 report that AdaFed (that implements 

both adaptive loss and weighted averaging functionalities) 

is unaffected by the adversarial clients (the difference with 

respect to the previous simulation is about 0.01% in 

accuracy and 0.015 in the macro F1-score), while FedAvg 

performances are significantly impacted, with accuracy 

losing about 2% and the macro F1-score being lower by 

about 0.1. We note that, in more complex scenarios, 

AdaFed weights 𝑝𝑖  may be set using arbitrary logics (e.g., 

a quadratic or cubic function of the accuracy) to further 

decrease or annihilate the weights given to 

underperforming (and hence potentially compromised) 

clients, as will be demonstrated in the following simulation. 
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Figure 6. Simulation 1.C (MNIST): Evolution of the server model 

accuracy over communication rounds, evaluated on the separated test 
set of the server. 

 

Figure 7. Simulation 1.C (MNIST): Evolution of the server model 

accuracy over communication rounds, evaluated on the separated test 
set of the server. 

4) Simulation 1.D (OARF) - Robustness unfavorable 

data distributions and/or adversarial actors 

Simulation 1.D considers a binary sentiment analysis 

classification task from the benchmark suite OARF [38], 

further highlighting the capabilities of AdaFed to cope 

with poorly distributed data. The parameters were set as 

𝐸 = 3, 𝐵 = 100 and 𝑅 = 5. 

The results obtained for Simulation 1.D are applicable 

also in scenarios in which the data are distributed in an 

extremely unfavorable way. In this simulation, we 

consider the sentiment analysis dataset from the 

benchmark suite Open Application Repository for 

Federated Learning (OARF) [38], consisting in 50k entries 

from the Amazon Movie review dataset proposed in [39] 

for a binary classification task. We assume the data to be 

partitioned among 𝐾 = 5 clients, as follows: 1 client only 

has access to ~ 5k samples from the negative class (i.e., 

negative review), 2 clients have access to a total of ~ 15k 

samples from the positive class (i.e., positive review), 

while the remaining two clients have ~ 10k and ~ 6k 

samples equally distributed over the two classes. Each 

agent employs a two-layer Long-Short-Term-Memory 

(LSTM) [40] neural network, with the same characteristics 

and data preprocessing employed in [38] and made 

available in [41]. The particular distribution of data makes 

so that all the clients that only have a single class available 

will tend to not generalise correctly, as always predicting 

the same class (even without considering the input data) 

will minimize their loss and let them reach a 100% 

accuracy. This in turn implies that their contribution to the 

federation will be questionable, if not negative, as the 

model they will forward for the averaging procedure will 

tend to be insensible to the input. To address such scenario, 

we propose for this simulation a different rule to compute 

the model weights 𝑝𝑖  for the averaging procedure. Namely, 

we determine the weights as the accuracy percentage 

exceeding 55%, meaning that random models that reach an 

accuracy level of about 50% are associated to a 0 weight. 

Fig. 8 reports a comparison of the accuracies attained by 

AdaFed and FedAvg in the described scenario, evaluated 

on the entire test set of the Amazon database. It is possible 

to note that AdaFed (orange) reaches an overall accuracy 

of 80% from the very first iterations, in line with [38], 

while FedAvg (blue) fails to converge and overs around 

50%, which is the accuracy level expected from a random 

agent. 

 

Figure 8. Simulation 1.D (OARF Sentiment Analysis): Evolution of the 

server model Macro F1-score over communication rounds, evaluated on 

the separated test set of the server. 

B. Simulation 2 - CIFAR10 and Transfer Learning 

Having validated the effect of the two proposed 

modifications, we now test AdaFed on a more complex 

classification problem. The dataset considered for this 

simulation is the well-known CIFAR10 (Canadian 

Institute for Advanced Research) [42], and to further show 

the flexibility of the proposed approach we consider in this 

section a federated Transfer Learning [43], [44] solution. 

This case study is of particular importance, as transfer 

learning significantly reduces the number of trainable 

parameters by starting the training process with a neural 

network that was already trained to solve a similar task. 

The usage of such a network as the basis for the new 

predictor, effectively allows for a knowledge transfer 

between the previously solved problem and the new one 

(e.g., a typical solution in specialised computer vision task 

is to employ transfer learning with a general purpose image 

classifier that was trained on a complex - yet general - 

dataset such as ImageNet [45]). 

The reduction of the number of the trainable parameter 

leads directly impacts the training complexity and 

communication overhead needed to sustain the federation, 

making the combination of FL and transfer learning an 

efficient and effective solution.  

We also utilise this simulation to test AdaFed on a more 

complex task in a more general scenario that was not 

designed to stress any particular feature of the proposed 

algorithm.  

Being the dataset constituted by ~ 60k 32×32 color 

images of 10 different classes, we consider 𝐾 = 8 clients 

divided in two groups: the first four clients were given 

between 300 and 600 samples for each of the ten classes, 

while the remaining four only had data from five classes. 

The transfer learning model was constituted by the VGG19 

[46] network trained for ImageNet [45] and attached to 

four dense layers with respectively 2014, 512, 256 and 128 

neurons and ReLu [47] activation functions. The same 

adaptive loss and weighted averaging procedures as in 

Simulation 1 were employed. We also set 𝐸 = 5, 𝐵 = 100, 

𝑅 = 20. 
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Looking at Fig. 9, it is clear that AdaFed outperforms 

FedAvg starting from the 4th round, while the latter 

reaches the performance of the former as late as the 19th 

communication round. This behaviour can be partially 

explained by Fig. 10, which shows that AdaFed has an 

overall better F1-score performance, and by its improved 

weighted averaging rule, namely its ability to increase the 

weight of clients that have a more balanced dataset at their 

disposal. 

 

Figure 9. Simulation 2 (CIFAR10): Evolution of the server model 

accuracy over communication rounds, evaluated on the separated test 
set of the server. 

 

Figure 10. Simulation 2 (CIFAR10): Evolution of the server model 

macro F1-score over communication rounds, evaluated on the separated 

test set of the server. 

C. Simulation 3 - Medical Imaging 

As introduced, for its privacy preserving features, one 

of the most promising applications of FL is in the 

healthcare domain [48]. In fact, over the last few years 

several disruptive ML solutions have been developed to 

support medical operators and caretakers, but their 

development and training typically required a complex and 

expensive data collection campaign subject to several strict 

regulations such as GDPR.  

The FL framework provides an opportunity to enable 

the collaboration among clinical institutions by abolishing 

any confidential data exchanges. In this section, we will 

utilise two different medical datasets to demonstrate some 

additional characteristics of AdaFed. 

1) Simulation 3.A (NIH malaria) 

In this simulation we test our algorithm on the NIH 

malaria dataset [49] that consists in 27,558 cell images (of 

which 10% were reserved for the test set). The task 

associated to this dataset is a binary classification one and 

consists in discerning whether the depicted cell is infected.  

Fig. 11 reports an example of images contained in the 

dataset. 

We considered 𝐾 = 5 clients, figuratively representing 

five different medical institutions, and we divided 

uniformly the dataset among them. The neural network we 

used consisted of a stack of convolutional layers of 32, 32, 

64, 64, 128, 128 filters of size 3×3 followed by a fully 

connected layer of 128 neurons, all with ReLu activation 

functions and a dropout of 0.15. The output layer of the 

network consisted of a layer with a single sigmoid neuron. 

The loss considered was, as customary for binary 

classification tasks, the binary cross-entropy and it was 

minimized by an ADAM optimizer initialized with the 

standard Keras parameters. All other parameters were the 

same as in the first simulation. 

 

Figure 11. Simulation 3.A (NIH malaria dataset): Example of dataset 
images. 

 

Figure 12. Simulation 3.A (NIH malaria dataset): Evolution of the 
server model accuracy over communication rounds, evaluated on the 

separated test set of the server. 

The neural network architecture performs very well 

when trained on the entirety of the dataset, fast reaching a 

classification accuracy on the test set of over 95% in about 

three epochs. Conversely, due to the significant level of 

dropout and the relatively high number of parameters, the 

same network performed poorly on the individual clients, 

often becoming insensitive to the input and returning, as 

prediction, always the (slightly) more common label in the 

avail- able dataset. This phenomenon compromises the 

performance of FedAvg, as shown in Fig. 12 (blue line), 

where the federation does not manage to outperform a 

random agent. On the contrary, AdaFed is able to discard 

the models that show this unfavourable behaviour and, by 

propagating a neural network that combines only the 

properly trained ones, is able to reach the centralised 

performance (95%) after about five communication rounds. 

As already shown in the test on the OARF classification 

task (Section IV.A.4)), AdaFed demonstrated robustness 

against adversarial/unfavourable clients, allowing the 

federation to solve the task at hand. 

2) Simulation 3.B (VGG-Cell) - Regression 

In this final experiment we consider a regression 

problem, consisting in counting the number of cells that 

appear in a microscope image. For this task, in [50] the 

VGG-cell dataset was proposed, consisting of 200 

simulated images (e.g., see Fig. 13). The considered 

federation is formed by 𝐾 = 4  clients (once again 

representing different medical institutions) with evenly 
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distributed data. The client’s model implemented is the 

deep autoencoder [51] proposed in [52], that is 

characterised by over 3M parameters. The autoencoder is 

to be trained to reconstruct an image that identifies the 

centers of the cells, so that the image integral (pixel-wise 

sum) is equal to the cell count. For both AdaFed and 

FedAvg, for the training of the clients we implemented a 

data augmentation procedure that rotated and flipped each 

sample, obtaining eight times the original data. We set 𝐸 =
3 , 𝐵 = 50  and 𝑅 = 10 . The evaluation of the model 

performance and loss is carried out on a separated test set 

consisting in 10% of the original data, which was also 

augmented as described above. 

In this simulation, the model averaging procedure is 

conducted based on a different performance index with 

respect to the pixel-wise mean-squared error loss of the 

models, and it is set as the mean absolute percentage error 

(MAPE) of the cell counting. 

 

Figure 13. Simulation 3.B (VGG-Cell): Example of dataset image. 

 

Figure 14. Simulation 3.B (VGG-Cell): Evolution of the server model 

loss over communication rounds, evaluated on the separated test set of 
the server. 

 

Figure 15. Simulation 3.B (VGG-Cell): Evolution of the server model 

performance metric (cell counting mean percentage error) over 
communication rounds, evaluated on the separated test set of the server. 

Fig. 14 and Fig. 15 show that also for this regression 

task AdaFed is able to outperform the FedAvg: the model 

loss decreases faster and, after 10 rounds, the loss value is 

150.6 for AdaFed and 152.6 for FedAvg; the cell count 

MAPE reaches a value of about 6% at the fourth 

communication round while FedAvg needs 7 rounds to 

reach the same value. The main reason behind this 

behaviour is that AdaFed emphasizes the better performing 

clients, enabling a more efficient knowledge sharing 

through the federation. On the contrary, FedAvg gives the 

same importance to clients that are currently failing the 

task, consequently affecting and slowing down the 

convergence of the overall federated model. 

V. CONCLUSION 

This paper presented AdaFed, a new Federated 

Learning algorithm that is based on a weighted model 

averaging procedure that accounts for the different 

performance attained by the federation clients.  

AdaFed allows to deal with non-IID, imbalanced and 

extremely distributed data also in the presence of 

malicious/bad performing federation members. To attain a 

better performance on complex tasks, the proposed 

algorithm also envisages the possibility of dynamically 

adapting the training process itself by employing an 

adaptive loss function. 

Several validation examples were used to show that 

AdaFed achieves good performance in both classification 

and regression tasks on challenging scenarios. 

Future research directions involve the implementation 

of privacy-aware features into AdaFed and its 

decentralization. 
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